- Browse by Subject
Browsing by Subject "nanofibers"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A novel patient-specific three-dimensional drug delivery construct for regenerative endodontics(Wiley, 2018-10-03) Bottino, Marco C.; Albuquerque, Maria T. P.; Azabi, Asma; Münchow, Eliseu A.; Spolnik, Kenneth J.; Nör, Jacques E.; Edwards, Paul C.; Oral Pathology, Medicine and Radiology, School of DentistryEvoked bleeding (EB) clinical procedure, comprising a disinfection step followed by periapical tissue laceration to induce the ingrowth of undifferentiated stem cells from the periodontal ligament and alveolar bone, is currently the only regenerative-based therapeutic approach to treating pulp tissue necrosis in undeveloped (immature) permanent teeth approved in the United States. Yet, the disinfection step using antibiotic-based pastes leads to cytotoxic, warranting a biocompatible strategy to promote root canal disinfection with no or minimal side-effects to maximize the regenerative outcomes. The purpose of this investigation was to develop a tubular three-dimensional (3D) triple antibiotic-eluting construct for intracanal drug delivery. Morphological (scanning electron microscopy), chemical (Fourier transform infrared spectroscopy), and mechanical (tensile testing) characteristics of the polydioxanone-based triple antibiotic-eluting fibers were assessed. The antimicrobial properties of the tubular 3D constructs were determined in vitro and in vivo using an infected (Actinomyces naeslundii) dentin tooth slice model and a canine method of periapical disease, respectively. The in vitro data indicated significant antimicrobial activity and the ability to eliminate bacterial biofilm inside dentinal tubules. In vivo histological findings demonstrated that, using the EB procedure, the tubular 3D triple antibiotic-eluting construct allowed the formation of an appropriate environment that led to apex closure and the ingrowth of a thin layer of osteodentin-like tissue into the root canal. Taken together, these findings indicate that our novel drug delivery construct is a promising biocompatible disinfection strategy for immature permanent teeth with necrotic pulps.Item Triple Antibiotic Polymer Nanofibers for Intracanal Drug Delivery: Effects on Dual Species Biofilm and Cell Function(Elsevier, 2016-10) Pankajakshan, Divya; Albuquerque, Maria T.P.; Evans, Joshua D.; Kamocka, Malgorzata M.; Gregory, Richard L.; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryIntroduction Root canal disinfection and the establishment of an intracanal microenvironment conducive to the proliferation/differentiation of stem cells play a significant role in regenerative endodontics. This study was designed to (1) investigate the antimicrobial efficacy of triple antibiotic–containing nanofibers against a dual-species biofilm and (2) evaluate the ability of dental pulp stem cells (DPSCs) to adhere to and proliferate on dentin upon nanofiber exposure. Methods Seven-day-old dual-species biofilm established on dentin specimens was exposed for 3 days to the following: saline (control), antibiotic-free nanofibers (control), and triple antibiotic–containing nanofibers or a saturated triple antibiotic paste (TAP) solution (50 mg/mL in phosphate buffer solution). Bacterial viability was assessed using the LIVE/DEAD assay (Molecular Probes, Inc, Eugene, OR) and confocal laser scanning microscopy. For cyto-compatibility studies, dentin specimens after nanofiber or TAP (1 g/mL in phosphate buffer solution) exposure were evaluated for cell adhesion and spreading by actin-phalloidin staining. DPSC proliferation was assessed on days 1, 3, and 7. Statistics were performed, and significance was set at the 5% level. Results Confocal laser scanning microscopy showed significant bacterial death upon antibiotic-containing nanofiber exposure, differing significantly (P < .05) from antibiotic-free fibers and the control (saline). DPSCs showed enhanced adhesion/spreading on dentin specimens treated with antibiotic-containing nanofibers when compared with its TAP counterparts. The DPSC proliferation rate was similar on days 1 and 3 in antibiotic-free nanofibers, triple antibiotic–containing nanofibers, and TAP-treated dentin. Proliferation was higher (9-fold) on dentin treated with antibiotic-containing nanofibers on day 7 compared with TAP. Conclusions Triple antibiotic–containing polymer nanofibers led to significant bacterial death, whereas they did not affect DPSC attachment and proliferation on dentin.