- Browse by Subject
Browsing by Subject "myeloproliferative disorder (MPD)"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Genetic disruption of the PI3K regulatory subunits, p85 alpha, p55 alpha, and p50 alpha partially normalizes gain-of-function PTPN11- induced hypersensitivity to GM-CSF in hematopoietic progenitors(Office of the Vice Chancellor for Research, 2011-04-08) Goodwin, Charles B.; Yang, Zhenyun; Yin, Fuqin; Chan, Rebecca J.Juvenile Myelomonocytic Leukemia (JMML) is a lethal myeloproliferative disorder (MPD) of children, characterized by hyperproliferation of myelomonocytic cells and hypersensitivity to Granulocyte-Monocyte Colony-Stimulating Factor (GM-CSF). JMML is frequently associated with gain-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase, Shp2, and which is known to positively regulate Ras signaling. The role of MAPK signaling in gain-of-function mutant Shp2-induced leukemogenesis is well established. In addition, phosphoAkt levels are elevated in the presence of gain-of-function Shp2 mutations, suggesting a role for Phosphatidyl-Inositol-3-Kinase (PI3K) signaling (Yang, et al, 2008). Class IA PI3K is a lipid kinase heterodimer composed of one of two regulatory subunits—p85 alpha or p85 beta—and one of three catalytic subunits—p110 alpha, p110 beta, or p110 delta. PI3K mediates proliferative and anti-apoptotic signals. We have found that there is increased interaction between the p85 alpha regulatory subunit and the p110 alpha catalytic subunit in gain-offunction mutant Shp2-expressing cells compared to WT Shp2-expressing cells. The p85 alpha regulatory subunit, along with its splice variants, p55 alpha and p50 alpha, is encoded by the gene Pik3r1. To investigate the hypothesis that p85 alpha-dependent PI3K signaling contributes to gain-of-function mutant Shp2-induced GM-CSF hypersensitivity, WT and Pik3r1-/- fetal liver-derived hematopoietic progenitor cells were transduced with WT Shp2 or gain-of-function mutant Shp2 E76K. Ablation of all the Pik3r1 isoforms resulted in a significant, but incomplete, correction of GM-CSF hypersensitivity in Shp2 E76K-expressing cells. Consistently, upon genetic disruption of Pik3r1, Akt phosphorylation was reduced in both WT Shp2- and Shp2 E76K-expressing cells compared to that seen in Pik3r1+/+ cells, but was not completely absent. Additionally, Erk activation was reduced in Pik3r1-/- cells expressing Shp2 E76K compared to that in Pik3r1+/+ cells, indicating that interruption of Shp2-mediated PI3K signaling affects the MAPK pathway as well, which likely contributes to the reduction in GM-CSF-stimulated proliferation in the Pik3r1-/- cells. Finally, treatment with the PI3K inhibitor, LY294002 resulted in complete abrogation of Akt phosphorylation in Pik3r1-/- cells transduced with Shp2 E76K, indicating that residual PI3K activity in the absence of Pik3r1 likely contributes to the incomplete correction of GM-CSF hypersensitivity and suggesting that although p85 alpha plays an important role in gain-of-function mutant Shp2-induced hyperactivation of PI3K signaling, additional p85 alpha-independent mechanisms contribute as well.