ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "multiview clustering"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Marginalized Multiview Ensemble Clustering
    (IEEE, 2019-04) Tao, Zhiqiang; Liu, Hongfu; Li, Sheng; Ding, Zhengming; Fu, Yun; Computer Information and Graphics Technology, School of Engineering and Technology
    Multiview clustering (MVC), which aims to explore the underlying cluster structure shared by multiview data, has drawn more research efforts in recent years. To exploit the complementary information among multiple views, existing methods mainly learn a common latent subspace or develop a certain loss across different views, while ignoring the higher level information such as basic partitions (BPs) generated by the single-view clustering algorithm. In light of this, we propose a novel marginalized multiview ensemble clustering (M 2 VEC) method in this paper. Specifically, we solve MVC in an EC way, which generates BPs for each view individually and seeks for a consensus one. By this means, we naturally leverage the complementary information of multiview data upon the same partition space. In order to boost the robustness of our approach, the marginalized denoising process is adopted to mimic the data corruptions and noises, which provides robust partition-level representations for each view by training a single-layer autoencoder. A low-rank and sparse decomposition is seamlessly incorporated into the denoising process to explicitly capture the consistency information and meanwhile compensate the distinctness between heterogeneous features. Spectral consensus graph partitioning is also involved by our model to make M 2 VEC as a unified optimization framework. Moreover, a multilayer M 2 VEC is eventually delivered in a stacked fashion to encapsulate nonlinearity into partition-level representations for handling complex data. Experimental results on eight real-world data sets show the efficacy of our approach compared with several state-of-the-art multiview and EC methods. We also showcase our method performs well with partial multiview data.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University