ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "multi-agent systems"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Selective decentralization to improve reinforcement learning in unknown linear noisy systems
    (IEEE, 2017-11) Nguyen, Thanh; Mukhopadhyay, Snehasis; Computer and Information Science, School of Science
    In this paper, we answer the question of to what extend selective decentralization could enhance the learning and control performance when the system is noisy and unknown. Compared to the previous works in selective decentralization, in this paper, we add the system noise as another complexity in the learning and control problem. Thus, we only perform analysis for some simple toy examples of noisy linear system. In linear system, the Halminton-Jaccobi-Bellman (HJB) equation becomes Riccati equation with closed-form solution. Our previous framework in learning and control unknown system is based on the following principle: approximating the system using identification in order to apply model-based solution. Therefore, this paper would explore the learning and control performance on two aspects: system identification error and system stabilization. Our results show that selective decentralization show better learning performance than the centralization when the noise level is low.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University