- Browse by Subject
Browsing by Subject "miR21"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging(Wiley, 2017-03-01) Davis, Hannah M.; Pacheco-Costa, Rafael; Atkinson, Emily G.; Brun, Lucas R.; Gortazar, Arancha R.; Harris, Julia; Hiasa, Masahiro; Bolarinwa, Surajudeen A.; Yoneda, Toshiyuki; Ivan, Mircea; Bruzzaniti, Angela; Bellido, Teresita; Plotkin, Lilian I.; Department of Anatomy & Cell Biology, IU School of MedicineSkeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43-silenced MLO-Y4 osteocytic (Cx43def) cells undergo spontaneous cell death in culture through caspase-3 activation and exhibit increased levels of apoptosis-related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43def cell death. Cx43def cells and bones from old mice exhibit reduced levels of the pro-survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43-expressing cells and miR21 deletion in miR21fl/fl bones increases apoptosis-related gene expression, whereas a miR21 mimic prevents Cx43def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high-mobility group box-1 (HMGB1)], and caspase-3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43def cells, which is blocked by antagonizing HMGB1-RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging.Item Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover(Wiley, 2019) Davis, Hannah M.; Deosthale, Padmini J.; Pacheco-Costa, Rafael; Essex, Alyson L.; Atkinson, Emily G.; Aref, Mohammad W.; Dilley, Julian E.; Bellido, Teresita; Ivan, Mircea; Allen, Matthew; Plotkin, Lilian I.; Anatomy and Cell Biology, School of MedicineOsteocytes play a critical role in mediating cell–cell communication and regulating bone homeostasis, and osteocyte apoptosis is associated with increased bone resorption. miR21, an oncogenic microRNA, regulates bone metabolism by acting directly on osteoblasts and osteoclasts, but its role in osteocytes is not clear. Here, we show that osteocytic miR21 deletion has sex‐divergent effects in bone. In females, miR21 deletion reduces osteocyte viability, but suppresses bone turnover. Conversely, in males, miR21 deletion increases osteocyte viability, but stimulates bone turnover and enhances bone structure. Further, miR21 deletion differentially alters osteocyte cytokine production in the two sexes. Interestingly, despite these changes, miR21 deletion increases bone mechanical properties in both sexes, albeit to a greater extent in males. Collectively, our findings suggest that miR21 exerts both sex‐divergent and sex‐equivalent roles in osteocytes, regulating osteocyte viability and altering bone metabolism through paracrine actions on osteoblasts and osteoclasts differentially in males vs females, whereas, influencing bone mechanical properties independent of sex.Item Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover(Wiley, 2019-09-18) Davis, Hannah M.; Deosthale, Padmini J.; Pacheco‐Costa, Rafael; Essex, Alyson L.; Atkinson, Emily G.; Aref, Mohammad W.; Dilley, Julian E.; Bellido, Teresita; Ivan, Mircea; Allen, Matthew R.; Plotkin, Lilian I.; Anatomy and Cell Biology, School of MedicineOsteocytes play a critical role in mediating cell-cell communication and regulating bone homeostasis, and osteocyte apoptosis is associated with increased bone resorption. miR21, an oncogenic microRNA, regulates bone metabolism by acting directly on osteoblasts and osteoclasts, but its role in osteocytes is not clear. Here, we show that osteocytic miR21 deletion has sex-divergent effects in bone. In females, miR21 deletion reduces osteocyte viability, but suppresses bone turnover. Conversely, in males, miR21 deletion increases osteocyte viability, but stimulates bone turnover and enhances bone structure. Further, miR21 deletion differentially alters osteocyte cytokine production in the two sexes. Interestingly, despite these changes, miR21 deletion increases bone mechanical properties in both sexes, albeit to a greater extent in males. Collectively, our findings suggest that miR21 exerts both sex-divergent and sex-equivalent roles in osteocytes, regulating osteocyte viability and altering bone metabolism through paracrine actions on osteoblasts and osteoclasts differentially in males vs. females, whereas, influencing bone mechanical properties independent of sex.