ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "metric learning"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Robust Discriminative Metric Learning for Image Representation
    (IEEE, 2018-11) Ding, Zhengming; Shao, Ming; Hwang, Wonjun; Suh, Sungjoo; Han, Jae-Joon; Choi, Changkyu; Fu, Yun; Computer Information and Graphics Technology, School of Engineering and Technology
    Metric learning has attracted significant attentions in the past decades, for the appealing advances in various realworld applications such as person re-identification and face recognition. Traditional supervised metric learning attempts to seek a discriminative metric, which could minimize the pairwise distance of within-class data samples, while maximizing the pairwise distance of data samples from various classes. However, it is still a challenge to build a robust and discriminative metric, especially for corrupted data in the real-world application. In this paper, we propose a Robust Discriminative Metric Learning algorithm (RDML) via fast low-rank representation and denoising strategy. To be specific, the metric learning problem is guided by a discriminative regularization by incorporating the pair-wise or class-wise information. Moreover, low-rank basis learning is jointly optimized with the metric to better uncover the global data structure and remove noise. Furthermore, fast low-rank representation is implemented to mitigate the computational burden and make sure the scalability on large-scale datasets. Finally, we evaluate our learned metric on several challenging tasks, e.g., face recognition/verification, object recognition, and image clustering. The experimental results verify the effectiveness of the proposed algorithm by comparing to many metric learning algorithms, even deep learning ones.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University