- Browse by Subject
Browsing by Subject "metabolism"
Now showing 1 - 10 of 230
Results Per Page
Sort Options
Item 14-3-3σ regulation of and interaction with YAP1 in acquired gemcitabine resistance via promoting ribonucleotide reductase expression(Impact Journals, LLC, 2016-04-05) Qin, Li; Dong, Zizheng; Zhang, Jian-Ting; Department of Pharmacology and Toxicology, IU School of MedicineGemcitabine is an important anticancer therapeutics approved for treatment of several human cancers including locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Its clinical effectiveness, however, is hindered by existence of intrinsic and development of acquired resistances. Previously, it was found that 14-3-3σ expression associates with poor clinical outcome of PDAC patients. It was also found that 14-3-3σ expression is up-regulated in gemcitabine resistant PDAC cells and contributes to the acquired gemcitabine resistance. In this study, we investigated the molecular mechanism of 14-3-3σ function in gemcitabine resistance and found that 14-3-3σ up-regulates YAP1 expression and then binds to YAP1 to inhibit gemcitabine-induced caspase 8 activation and apoptosis. 14-3-3σ association with YAP1 up-regulates the expression of ribonucleotide reductase M1 and M2, which may mediate 14-3-3σ/YAP1 function in the acquired gemcitabine resistance. These findings suggest a possible role of YAP1 signaling in gemcitabine resistance.Item An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion(The Endocrine Society, 2015-07) Priyadarshini, Medha; Villa, Stephanie R.; Fuller, Miles; Wicksteed, Barton; Mackay, Charles R.; Alquier, Thierry; Poitout, Vincent; Mancebo, Helena; Mirmira, Raghavendra G.; Gilchrist, Annette; Layden, Brian T.; Department of Pediatrics, IU School of MedicineG protein-coupled receptors have been well described to contribute to the regulation of glucose-stimulated insulin secretion (GSIS). The short-chain fatty acid-sensing G protein-coupled receptor, free fatty acid receptor 2 (FFAR2), is expressed in pancreatic β-cells, and in rodents, its expression is altered during insulin resistance. Thus, we explored the role of FFAR2 in regulating GSIS. First, assessing the phenotype of wild-type and Ffar2(-/-) mice in vivo, we observed no differences with regard to glucose homeostasis on normal or high-fat diet, with a marginally significant defect in insulin secretion in Ffar2(-/-) mice during hyperglycemic clamps. In ex vivo insulin secretion studies, we observed diminished GSIS from Ffar2(-/-) islets relative to wild-type islets under high-glucose conditions. Further, in the presence of acetate, the primary endogenous ligand for FFAR2, we observed FFAR2-dependent potentiation of GSIS, whereas FFAR2-specific agonists resulted in either potentiation or inhibition of GSIS, which we found to result from selective signaling through either Gαq/11 or Gαi/o, respectively. Lastly, in ex vivo insulin secretion studies of human islets, we observed that acetate and FFAR2 agonists elicited different signaling properties at human FFAR2 than at mouse FFAR2. Taken together, our studies reveal that FFAR2 signaling occurs by divergent G protein pathways that can selectively potentiate or inhibit GSIS in mouse islets. Further, we have identified important differences in the response of mouse and human FFAR2 to selective agonists, and we suggest that these differences warrant consideration in the continued investigation of FFAR2 as a novel type 2 diabetes target.Item Acetyl-Phosphate Is Not a Global Regulatory Bridge between Virulence and Central Metabolism in Borrelia burgdorferi(Public Library of Science (PLoS), 2015) Richards, Crystal L.; Lawrence, Kevin A.; Su, Hua; Yang, Youyun; Yang, X. Frank; Dulebohn, Daniel P.; Gherardini, Frank C.; Department of Microbiology and Immunology, IU School of MedicineIn B. burgdorferi, the Rrp2-RpoN-RpoS signaling cascade is a distinctive system that coordinates the expression of virulence factors required for successful transition between its arthropod vector and mammalian hosts. Rrp2 (BB0763), an RpoN specific response regulator, is essential to activate this regulatory pathway. Previous investigations have attempted to identify the phosphate donor of Rrp2, including the cognate histidine kinase, Hk2 (BB0764), non-cognate histidine kinases such as Hk1, CheA1, and CheA2, and small molecular weight P-donors such as carbamoyl-phosphate and acetyl-phosphate (AcP). In a report by Xu et al., exogenous sodium acetate led to increased expression of RpoS and OspC and it was hypothesized this effect was due to increased levels of AcP via the enzyme AckA (BB0622). Genome analyses identified only one pathway that could generate AcP in B. burgdorferi: the acetate/mevalonate pathway that synthesizes the lipid, undecaprenyl phosphate (C55-P, lipid I), which is essential for cell wall biogenesis. To assess the role of AcP in Rrp2-dependent regulation of RpoS and OspC, we used a unique selection strategy to generate mutants that lacked ackA (bb0622: acetate to AcP) or pta (bb0589: AcP to acetyl-CoA). These mutants have an absolute requirement for mevalonate and demonstrate that ackA and pta are required for cell viability. When the ΔackA or Δpta mutant was exposed to conditions (i.e., increased temperature or cell density) that up-regulate the expression of RpoS and OspC, normal induction of those proteins was observed. In addition, adding 20mM acetate or 20mM benzoate to the growth media of B. burgdorferi strain B31 ΔackA induced the expression of RpoS and OspC. These data suggest that AcP (generated by AckA) is not directly involved in modulating the Rrp2-RpoN-RpoS regulatory pathway and that exogenous acetate or benzoate are triggering an acid stress response in B. burgdorferi.Item Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization(Federation of American Society for Experimental Biology, 2014-01) Wang, Haibo; Jiang, Yanchao; Shi, Dallas; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Wittchen, Erika S.; Li, Dean Y.; Hartnett, M. Elizabeth; Department of Biochemistry & Molecular Biology, IU School of MedicineActivation of Rap1 GTPase can improve the integrity of the barrier of the retina pigment epithelium (RPE) and reduce choroidal neovascularization (CNV). Inhibition of NADPH oxidase activation also reduces CNV. We hypothesize that Rap1 inhibits NADPH oxidase-generated ROS and thereby reduces CNV formation. Using a murine model of laser-induced CNV, we determined that reduced Rap1 activity in RPE/choroid occurred with CNV formation and that activation of Rap1 by 2'-O-Me-cAMP (8CPT)-reduced laser-induced CNV via inhibiting NADPH oxidase-generated ROS. In RPE, inhibition of Rap1 by Rap1 GTPase-activating protein (Rap1GAP) increased ROS generation, whereas activation of Rap1 by 8CPT reduced ROS by interfering with the assembly of NADPH oxidase membrane subunit p22phox with NOX4 or cytoplasmic subunit p47phox. Activation of NADPH oxidase with Rap1GAP reduced RPE barrier integrity via cadherin phosphorylation and facilitated choroidal EC migration across the RPE monolayer. Rap1GAP-induced ROS generation was inhibited by active Rap1a, but not Rap1b, and activation of Rap1a by 8CPT in Rap1b(-/-) mice reduced laser-induced CNV, in correlation with decreased ROS generation in RPE/choroid. These findings provide evidence that active Rap1 reduces CNV by interfering with the assembly of NADPH oxidase subunits and increasing the integrity of the RPE barrier.Item Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone(Wiley Blackwell (Blackwell Publishing), 2017-04) Wang, Xiaoting; Romine, Jennifer Lynn; Gao, Xiang; Chen, Jinhui; Neurological Surgery, School of MedicineAll aging individuals will develop some degree of decline in cognitive capacity as time progresses. The molecular and cellular mechanisms leading to age-related cognitive decline are still not fully understood. Through our previous research, we discovered that active neural progenitor cells selectively become more quiescent in response to aging, thus leading to the decline of neurogenesis in the aged hippocampus. Here, we further find that aging impaired dendrite development of newborn neurons. Currently, no effective approach is available to increase neurogenesis or promote dendrite development of newborn neurons in the aging brain. We found that systemically administration of 7, 8-dihydroxyflavone (DHF), a small molecule imitating brain-derived neurotrophic factor (BDNF), significantly enhanced dendrite length in the newborn neurons, while it did not promote survival of immature neurons, in the hippocampus of 12-month-old mice. DHF-promoted dendrite development of newborn neurons in the hippocampus may enhance their function in the aging animal leading to a possible improvement in cognition.Item Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients(American Society for Clinical Investigation, 2015-08-03) Rigby, Mark R.; Harris, Kristina M.; Pinckney, Ashley; DiMeglio, Linda A.; Rendell, Marc S.; Felner, Eric I.; Dostou, Jean M.; Gitelman, Stephen E.; Griffin, Kurt J.; Tsalikian, Eva; Gottlieb, Peter A.; Greenbaum, Carla J.; Sherry, Nicole A.; Moore, Wayne V.; Monzavi, Roshanak; Willi, Steven M.; Raskin, Philip; Keyes-Elstein, Lynette; Long, S. Alice; Kanaparthi, Sai; Lim, Noha; Phippard, Deborah; Soppe, Carol L.; Fitzgibbon, Margret L.; McNamara, James; Nepom, Gerald T.; Ehlers, Mario R.; Department of Pediatrics, IU School of MedicineBACKGROUND: Type 1 diabetes (T1D) results from destruction of pancreatic β cells by autoreactive effector T cells. We hypothesized that the immunomodulatory drug alefacept would result in targeted quantitative and qualitative changes in effector T cells and prolonged preservation of endogenous insulin secretion by the remaining β cells in patients with newly diagnosed T1D. METHODS: In a multicenter, randomized, double-blind, placebo-controlled trial, we compared alefacept (two 12-week courses of 15 mg/wk i.m., separated by a 12-week pause) with placebo in patients with recent onset of T1D. Endpoints were assessed at 24 months and included meal-stimulated C-peptide AUC, insulin use, hypoglycemic events, and immunologic responses. RESULTS: A total of 49 patients were enrolled. At 24 months, or 15 months after the last dose of alefacept, both the 4-hour and the 2-hour C-peptide AUCs were significantly greater in the treatment group than in the control group (P = 0.002 and 0.015, respectively). Exogenous insulin requirements were lower (P = 0.002) and rates of major hypoglycemic events were about 50% reduced (P < 0.001) in the alefacept group compared with placebo at 24 months. There was no apparent between-group difference in glycemic control or adverse events. Alefacept treatment depleted CD4+ and CD8+ central memory T cells (Tcm) and effector memory T cells (Tem) (P < 0.01), preserved Tregs, increased the ratios of Treg to Tem and Tcm (P < 0.01), and increased the percentage of PD-1+CD4+ Tem and Tcm (P < 0.01). CONCLUSIONS: In patients with newly diagnosed T1D, two 12-week courses of alefacept preserved C-peptide secretion, reduced insulin use and hypoglycemic events, and induced favorable immunologic profiles at 24 months, well over 1 year after cessation of therapy. TRIAL REGISTRATION: https://clinicaltrials.gov/ NCT00965458. FUNDING: NIH and Astellas.Item Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses(Oxford, 2016-08) Webb, Tonya J.; Carey, Gregory B.; East, James E.; Sun, Wenji; Bollino, Dominique R.; Kimball, Amy S.; Brutkiewicz, Randy R.; Microbiology and Immunology, School of MedicineNatural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5′-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses.Item The altered mononuclear cell-derived cytokine response to glucose ingestion is not regulated by excess adiposity in polycystic ovary syndrome(The Endocrine Society, 2014-11) González, Frank; Sia, Chang Ling; Shepard, Marguerite K.; Rote, Neal S.; Minium, Judi; Department of Obstetrics & Gynecology, IU School of MedicineCONTEXT: Excess adipose tissue is a source of inflammation. Polycystic ovary syndrome (PCOS) is a proinflammatory state and is often associated with excess abdominal adiposity (AA) alone and/or frank obesity. OBJECTIVE: To determine the effect of glucose ingestion on cytokine release from mononuclear cells (MNC) in women with PCOS with and without excess AA and/or obesity. DESIGN: A cross-sectional study. SETTING: Academic medical center. PATIENTS: Twenty-three women with PCOS (seven normal weight with normal AA, eight normal weight with excess AA, eight obese) and 24 ovulatory controls (eight normal weight with normal AA, eight normal weight with excess AA, eight obese). INTERVENTION: Three-hour 75-g oral glucose tolerance test (OGTT). MAIN OUTCOME MEASURES: Body composition was measured by dual energy x-ray absorptiometry. Insulin sensitivity was derived from the OGTT (ISOGTT). TNFα, IL-6, and IL-1β release was measured in supernatants of cultured MNC isolated from blood samples drawn while fasting and 2 hours after glucose ingestion. RESULTS: Insulin sensitivity was lower in obese subjects regardless of PCOS status and in normal-weight women with PCOS compared with normal-weight controls regardless of body composition status. In response to glucose ingestion, MNC-derived TNFα, IL-6, and IL-1β release decreased in both normal-weight control groups but failed to suppress in either normal-weight PCOS group and in obese women regardless of PCOS status. For the combined groups, the cytokine responses were negatively correlated with insulin sensitivity and positively correlated with abdominal fat and androgens. CONCLUSIONS: Women with PCOS fail to suppress MNC-derived cytokine release in response to glucose ingestion, and this response is independent of excess adiposity. Nevertheless, a similar response is also a feature of obesity per se. Circulating MNC and excess adipose tissue are separate and distinct sources of inflammation in this population.Item AMP kinase promotes Bcl6 expression in both mouse and human T cells(Elsevier, 2017-01) Xie, Markus M.; Amet, Tohti; Liu, Hong; Yu, Qigui; Dent, Alexander L.; Department of Microbiology and Immunology, School of MedicineThe transcription factor Bcl6 is a master regulator of follicular helper T (TFH) cells, and understanding the signaling pathway that induces Bcl6 and TFH cell differentiation is therefore critical. IL-2 produced during T cell activation inhibits Bcl6 expression but how TFH cells evade IL-2 inhibition is not completely understood. Here we show that Bcl6 is highly up-regulated in activated CD4 T cells following glucose deprivation (GD), and this pathway is insensitive to inhibition by IL-2. Similar to GD, the glucose analog 2-deoxyglucose (2DG) inhibits glycolysis, and 2DG induced Bcl6 expression in activated CD4 T cells. The metabolic sensor AMP kinase (AMPK) is activated when glycolysis is decreased, and the induction of Bcl6 by GD was inhibited by the AMPK antagonist compound C. Additionally, activation of AMPK by the drug AICAR caused Bcl6 up-regulation in activated CD4 T cells. When mice were immunized with KLH using AICAR as an adjuvant, there was a strong TFH–dependent enhancement of KLH-specific antibody (Ab) responses, and higher Bcl6 expression in TFH cells in vivo. Activation of AMPK strongly induced BCL6 and the up-regulation of TFH cell marker expression by human CD4 T cells. Our data reveal a major new pathway for TFH cell differentiation, conserved by both mouse and human T cells. Mature TFH cells are reported to have a lower metabolic state compared to TH1 cells. Our data indicates that decreased metabolism may be deterministic for TFH cell differentiation, and not simply a result of TFH cell differentiation.Item An expanded population of CD8dim T cells with features of mitochondrial dysfunction and senescence is associated with persistent HIV-associated Kaposi’s sarcoma under ART(Frontiers, 2022-09-29) Clutton, Genevieve T.; Weideman, Ann Marie K.; Goonetilleke, Nilu P.; Maurer , Toby; Dermatology, School of MedicineHIV-associated Kaposi’s sarcoma (KS), which is caused by Kaposi’s sarcoma-associated herpesvirus, usually arises in the context of uncontrolled HIV replication and immunosuppression. However, disease occasionally occurs in individuals with durable HIV viral suppression and CD4 T cell recovery under antiretroviral therapy (ART). The underlying mechanisms associated with this phenomenon are unclear. Suppression of viral infections can be mediated by CD8 T cells, which detect infected cells via their T cell receptor and the CD8 coreceptor. However, CD8 T cells exhibit signs of functional exhaustion in untreated HIV infection that may not be fully reversed under ART. To investigate whether KS under ART was associated with phenotypic and functional perturbations of CD8 T cells, we performed a cross-sectional study comparing HIV-infected individuals with persistent KS under effective ART (HIV+ KS+) to HIV-infected individuals receiving effective ART with no documented history of KS (HIV+ KSneg). A subset of T cells with low cell surface expression of CD8 (“CD8dim T cells”) was expanded in HIV+ KS+ compared with HIV+ KSneg participants. Relative to CD8bright T cells, CD8dim T cells exhibited signs of senescence (CD57) and mitochondrial alterations (PGC-1α, MitoTracker) ex vivo. Mitochondrial activity (MitoTracker) was also reduced in proliferating CD8dim T cells. These findings indicate that an expanded CD8dim T cell population displaying features of senescence and mitochondrial dysfunction is associated with KS disease under ART. CD8 coreceptor down-modulation may be symptomatic of ongoing disease.