- Browse by Subject
Browsing by Subject "medical imaging"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item AI recognition of patient race in medical imaging: a modelling study(Elsevier, 2022-06) Gichoya, Judy Wawira; Banerjee, Imon; Bhimireddy, Ananth Reddy; Burns, John L.; Celi, Leo Anthony; Chen, Li-Ching; Correa, Ramon; Dullerud, Natalie; Ghassemi, Marzyeh; Huang, Shih-Cheng; Kuo, Po-Chih; Lungren, Matthew P.; Palmer, Lyle J.; Price, Brandon J.; Purkayastha, Saptarshi; Pyrros, Ayis T.; Oakden-Rayner, Lauren; Okechukwu, Chima; Seyyed-Kalantari, Laleh; Trivedi, Hari; Wang, Ryan; Zaiman, Zachary; Zhang, Haoran; BioHealth Informatics, School of Informatics and ComputingBackground Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. Methods Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. Findings In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. Interpretation The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. Funding National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.Item Energy Efficiency of Quantized Neural Networks in Medical Imaging(2022-04) Sinha, Priyanshu; Tummala, Sai Sreya; Purkayastha, Saptarshi; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingThe main goal of this paper is to compare the energy efficiency of quantized neural networks to perform medical image analysis on different processors and neural network architectures. Deep neural networks have demonstrated outstanding performance in medical image analysis but require high computation and power usage. In our work, we review the power usage and temperature of processors when running Resnet and Unet architectures to perform image classification and segmentation respectively. We compare Edge TPU, Jetson Nano, Apple M1, Nvidia Quadro P6000 and Nvidia A6000 to infer using full-precision FP32 and quantized INT8 models. The results will be useful for designers and implementers of medical imaging AI on hand-held or edge computing devices.Item Reading Race: AI Recognises Patient's Racial Identity In Medical Images(arXiv, 2021) Banerjee, Imon; Bhimireddy, Ananth Reddy; Burns, John L.; Celi, Leo Anthony; Chen, Li-Ching; Correa, Ramon; Dullerud, Natalie; Ghassemi, Marzyeh; Huang, Shih-Cheng; Kuo, Po-Chih; Lungren, Matthew P.; Palmer, Lyle; Price, Brandon J.; Purkayastha, Saptarshi; Pyrros, Ayis; Oakden-Rayner, Luke; Okechukwu, Chima; Seyyed-Kalantari, Laleh; Trivedi, Hari; Wang, Ryan; Zaiman, Zachary; Zhang, Haoran; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingBackground: In medical imaging, prior studies have demonstrated disparate AI performance by race, yet there is no known correlation for race on medical imaging that would be obvious to the human expert interpreting the images. Methods: Using private and public datasets we evaluate: A) performance quantification of deep learning models to detect race from medical images, including the ability of these models to generalize to external environments and across multiple imaging modalities, B) assessment of possible confounding anatomic and phenotype population features, such as disease distribution and body habitus as predictors of race, and C) investigation into the underlying mechanism by which AI models can recognize race. Findings: Standard deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities. Our findings hold under external validation conditions, as well as when models are optimized to perform clinically motivated tasks. We demonstrate this detection is not due to trivial proxies or imaging-related surrogate covariates for race, such as underlying disease distribution. Finally, we show that performance persists over all anatomical regions and frequency spectrum of the images suggesting that mitigation efforts will be challenging and demand further study. Interpretation: We emphasize that model ability to predict self-reported race is itself not the issue of importance. However, our findings that AI can trivially predict self-reported race -- even from corrupted, cropped, and noised medical images -- in a setting where clinical experts cannot, creates an enormous risk for all model deployments in medical imaging: if an AI model secretly used its knowledge of self-reported race to misclassify all Black patients, radiologists would not be able to tell using the same data the model has access to.Item Using VR to Enhance Anatomy Education for Medical Imaging Learners(2020-03-06) Misquith, Chelsea; Patterson, DebraThe Ruth Lilly Medical Library’s Nexus Collaborative Learning Lab (Nexus) and the Medical Imaging Technology (MIT) Program at IUSM have partnered to create a series of Virtual Reality (VR) modules to enhance student comprehension and retention of anatomy for Cardiac Interventional (CI), Computed Tomography (CT), Vascular Interventional (VI), and Magnetic Resonance Imaging (MRI). This presentation will introduce you to VR and its applications in medical education, and describe the VR service available through the Nexus. Learn how a VR app for anatomy education, 3D Organon VR, was used to create greater student-content interactivity and to add flexibility to instruction.