- Browse by Subject
Browsing by Subject "medical image processing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Building a Surface Atlas of Hippocampal Subfields from MRI Scans using FreeSurfer, FIRST and SPHARM(Institute of Electrical and Electronics Engineers, 2014-08) Cong, Shan; Rizkalla, Maher; Du, Eliza Y.; West, John; Risacher, Shannon; Saykin, Andrew J.; Shen, Li; Alzheimer's Disease Neuroimaging Initiative; Department of Medicine, IU School of MedicineThe hippocampus is widely studied with neuroimaging techniques given its importance in learning and memory and its potential as a biomarker for brain disorders such as Alzheimer's disease and epilepsy. However, its complex folding anatomy often presents analytical challenges. In particular, the critical hippocampal subfield information is usually ignored by hippocampal registration in detailed morphometric studies. Such an approach is thus inadequate to accurately characterize hippocampal morphometry and effectively identify hippocampal structural changes related to different conditions. To bridge this gap, we present our initial effort towards building a computational framework for subfield-guided hippocampal morphometry. This initial effort is focused on surface-based morphometry and aims to build a surface atlas of hippocampal subfields. Using the FreeSurfer software package, we obtain valuable hippocampal subfield information. Using the FIRST software package, we extract reliable hippocampal surface information. Using SPHARM, we develop an approach to create an atlas by mapping interpolated subfield information onto an average surface. The empirical result using ADNI data demonstrates the promise and good reproducibility of the proposed method.Item Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study(Institute of Electrical and Electronics Engineers, 2014-09-03) Bailey, Michael; Cunitz, Bryan; Dunmire, Barbrina; Paun, Marla; Lee, Franklin; Ross, Susan; Lingeman, James; Coburn, Michael; Wessells, Hunter; Sorensen, Mathew; Harper, Jonathan; Department of Medicine, IU School of MedicineOne in 11 Americans has experienced kidney stones, with a 50% average recurrence rate within 5-10 years. Ultrasonic propulsion (UP) offers a potential method to expel small stones or residual fragments before they become a recurrent problem. Reported here are preliminary findings from the first investigational use of UP in humans. The device uses a Verasonics ultrasound engine and Philips HDI C5-2 probe to generate real-time B-mode imaging and targeted "push" pulses on demand. There are three arms of the study: de novo stones, post-lithotripsy fragments, and the preoperative setting. A pain questionnaire is completed prior to and following the study. Movement is classified based on extent. Patients are followed for 90 days. Ten subjects have been treated to date: three de novo, five post-lithotripsy, and two preoperative. None of the subjects reported pain associated with the treatment or a treatment related adverse event, beyond the normal discomfort of passing a stone. At least one stone was moved in all subjects. Three of five post-lithotripsy subjects passed a single or multiple stones within 1-2 weeks following treatment; one subject passed two (1-2 mm) fragments before leaving clinic. In the pre-operative studies we successfully moved 7 - 8 mm stones. In four subjects, UP revealed multiple stone fragments where the clinical image and initial ultrasound examination indicated a single large stone.