- Browse by Subject
Browsing by Subject "maximum power point tracking"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Hybrid Wind-Solar-Storage Energy Harvesting Systems(2016) Shen, Dan; Rizkalla, Maher; Izadian, Afshin; Li, Lingxi; King, BrianWith the increasing demand of economy and environmental pollutions, more and more renewable energy systems with clean sources appear and have attracted attention of systems involving solar power, wind power and hybrid new energy powers[1]. However, there are some difficulties associated with combined utilization of solar and wind, such as their intermittent behavior and their peak hours mismatch in generation and consumption[1]. For this purpose, advanced network of a variety of renewable energy systems along with controllable load and storage units have been introduced[1-3]. This thesis proposes some configurations of hybrid energy harvesting systems, including wind-wind-storage DC power system with BOOST converters, solar-solar-storage DC power system with cascade BOOST converters, wind-solar-storage DC power system with BOOST converter and cascade BOOST converter, and wind-solar DC power system with SEPIC converter and BOOST converter. The models of all kinds of systems are built in Matlab/Simulink and the mathematical state-space models of combined renewable energy systems are also established. Several MPPT control strategies are introduced and designed to maximize the simultaneous power capturing from wind and solar, such as Perturb & Observe (P&O) algorithm for solar and wind, Tip Speed Ratio (TSR) control and Power Signal Feedback (PSF) control for wind, and Sliding Mode Extremum Seeking Control (SM-ESC) for wind and solar systems[4]. The control effects of some of these MPPT methods are also compared and analyzed. The supervisory control strategies corresponding to each configurations are also discussed and implemented to maximize the simultaneous energy harvesting from both renewable sources and balance the energy between the sources, battery and the load[2]. Different contingencies are considered and categorized according to the power generation available at each renewable source and the state of charge in the battery[2]. Applying the system architectures and control methods in the proposed hybrid new energy systems is a novel and significant attempt, which can be more general in the practical applications. Simulation results demonstrate accurate operation of the supervisory controller and functionality of the maximum power point tracking algorithm in each operating condition both for solar and for wind power[3]Item Modeling and Control of A Combined Wind-Solar Microgrid(IEEE, 2014) Shen, Dan; Izadian, Afshin; Department of Engineering Technology, School of Engineering and TechnologyThis paper introduces a standalone hybrid power generation system consisting of solar and wind power sources and a DC load. A supervisory control unit, designed to execute maximum power point tracking (MPPT), is introduced to maximize the simultaneous energy harvesting from overall power generation under different climatic conditions. Two contingencies are considered and categorized according to the power generation from each energy source, and the load requirement. Simulation results demonstrate effectiveness of the controllers and functionality of the maximum power point tracking algorithm in each operating condition for both solar and wind power sources.Item Sliding Mode Control of A DC Distributed Solar Microgrid(IEEE, 2015-02) Shen, Dan; Izadian, Afshin; Department of Engineering Technology, IU School of Engineering and TechnologyThis paper proposes a standalone distributed photovoltaic system which includes two independently controlled solar power sources, a battery storage and a resistive load. Each of the PV panels consist of cascaded DC-DC boost converters controlled through two independent sliding mode controllers. The design and simulation of the supervisory controller are also discussed. First, maximum power point tracking (MPPT) control strategy is introduced to maximize the simultaneous energy harvesting from both renewable sources. Then, according to the power generation available at each renewable source and the state of charge in the battery, four contingencies will be considered in the supervisory controller. Moreover, power converters interfacing the source and common DC bus will be controlled as voltage sources under a Pi-sliding mode controller. Numerical simulations demonstrate accurate operation of the supervisory controller and functionality of the MPPT algorithm in each operating condition.