- Browse by Subject
Browsing by Subject "macrophages"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Apurinic/Apyrimidinic Endonuclease 1 Regulates Inflammatory Response in Macrophages(2011-02) Jedinak, Andrej; Dudhgaonkar, Shailesh; Kelley, Mark R.; Sliva, DanielThe multi-functional apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) DNA repair and redox signaling protein has been shown to have a role in cancer growth and survival, however, little has been investigated concerning its role in inflammation. In this study, an APE1 redox-specific inhibitor (E3330) was used in lypopolysaccharide (LPS)-stimulated macrophages (RAW264.7). E3330 clearly suppressed secretion of inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL-6) and IL-12 and inflammatory mediators nitric oxide (NO) as well as prostaglandin E2 (PGE2) from the LPS-stimulated RAW264.7 cells. These data were supported by the down-regulation of the LPS-dependent expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes in the RAW264.7 cells. The effects of E3330 were mediated by the inhibition of transcription factors nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) in the LPS-stimulated macrophages, both known targets of APE1. In conclusion, pharmacological inhibition of APE1 by E3330 suppresses inflammatory response in activated macrophages and can be considered as a novel therapeutic strategy for the inhibition of tumor-associated macrophages.Item A distinct transcriptional profile in response to endothelial monocyte activating polypeptide II is partially mediated by JAK-STAT3 in murine macrophages(American Physiological Society, 2019-09-01) Lee, Daniel D.; Hochstetler, Alexandra; Murphy, Christina; Lowe, Chinn-Woan; Schwarz, Margaret A.; Pediatrics, School of MedicineMacrophages are important responders to environmental changes such as secreted factors. Among the secreted factors in injured tissues, the highly conserved endothelial monocyte activating polypeptide II (EMAP II) has been characterized to limit vessel formation, to be locally expressed near sites of injury labeling it a “find-me” signal, and to recruit macrophages and neutrophils. The molecular mechanisms mediated by EMAP II within macrophages once they are recruited are unknown. In this study, using a model of partially activated, recruited thioglycollate-elicited peritoneal macrophages, a transient, transcription profile of key functional genes in macrophages exposed to EMAP II was characterized. We found that EMAP II-mediated changes were elicited mainly through signal transducer and activator of transcription 3 (STAT3) as evidenced by increased Y705 phosphorylation and changes in activity and upstream of it, Janus associated kinase (JAK)1/2 upstream. Both inhibition of JAK1/2 and knockdown of Stat3 abrogated a subset of genes that are upregulated by EMAP II. Our results identify a rapid EMAP II-mediated STAT3 activation that coincides with altered pro- and anti-inflammatory gene expression in macrophages.Item Effects of Soy Peptide on Dendritic Cells(Office of the Vice Chancellor for Research, 2013-04-05) Shipman, Kaylee; Tung, Chun-Yu; Han, Ling; Patel, Amy; Corn, Caleb; Chang, Hua-ChenInnate immunity is mediated by effector cells, including NK cells, dendritic cells (DCs), macrophages, and polymorphonuclear phagocytes, which can respond immediately after activation through receptors encoded by germ-line genes. Innate immune responses represent the first line of defense in immunosurveillance. Interventions that enhance the functions of innate immunity will be an important armamentarium to human health. We recently exploited a natural dietary soy peptide called lunasin to improve the immune functions. The hypothesis was that lunasin peptide has stimulatory effects on immune cells. To test this hypothesis, human peripheral blood mononuclear cells (PBMCs) of healthy donors were stimulated with or without lunasin. We found that lunasin is capable of stimulating DCs to up-regulate chemokines (CCL2, CCL3, and CCL4), cytokines (TNFα and IFNα), and co-stimulatory molecules (CD80, CD86). In addition, lunasin-treated DCs can provide NK with required signals for activation. Taken together, our results support the immunomodulatory activity of soy peptide on DCs, which leads to enhancement of innate immunity.Item Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function(ASH, 2017-12) Mohamad, Safa F.; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J.; Abeysekera, Irushi; Himes, Evan R.; Wu, Hao; Alvarez, Marta B.; Davis, Korbin M.; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A.; Srour, Edward F.; Biomedical Sciences and Comprehensive Care, School of DentistryNetworking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)–derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell–associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase–positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.Item Vibrio vulnificus induces mTOR activation and inflammatory responses in macrophages(PLOS, 2017-07-18) Xie, Dan-Li; Zheng, Meng-Meng; Zheng, Yi; Gao, Hui; Zhang, Jie; Zhang, Ting; Guo, Jian-Chun; Yang, X. Frank; Zhong, Xiao-Ping; Lou, Yong-Liang; Microbiology and Immunology, School of MedicineVibrio vulnificus (V. vulnificus), a Gram-negative marine bacterium, can cause life-threatening primary septicemia, especially in patients with liver diseases. How V. vulnificus affects the liver and how it acts on macrophages are not well understood. In this report, we demonstrated that V. vulnificus infection causes a strong inflammatory response, marked expansion of liver-resident macrophages, and liver damage in mice. We demonstrated further that V. vulnificus activates mTOR in macrophages and inhibition of mTOR differentially regulates V. vulnificus induced inflammatory responses, suggesting the possibility of targeting mTOR as a strategy to modulate V. vulnificus induced inflammatory responses.