- Browse by Subject
Browsing by Subject "mPTPB inhibitor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A facile hydroxyindole carboxylic acid based focused library approach for potent and selective inhibitors of Mycobacterium protein tyrosine phosphatase B(Wiley, 2013) Zeng, Li-Fan; Xu, Jie; He, Yantao; He, Rongjun; Wu, Li; Gunawan, Andrea M.; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of MedicineFocused on Mtb: A facile hydroxyindole carboxylic acid based focused amide library was designed to target both the PTP active site and a unique nearby pocket for enhanced affinity and selectivity. HTS of the library led to the identification of a highly potent and selective inhibitor, 11 a, of mPTPB, an essential virulence factor for Mycobacterium tuberculosis. Compound 11 a shows high cellular activity and is capable of reversing the altered immune responses induced by mPTPB in macrophages.Item Cefsulodin Inspired Potent and Selective Inhibitors of mPTPB, a Virulent Phosphatase from Mycobacterium tuberculosis(ACS Publications, 2015-12-10) He, Rongjun; Yu, Zhi-Hong; Zhang, Ruo-Yu; Wu, Li; Gunawan, Andrea M.; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicinemPTPB is a virulent phosphatase from Mycobacterium tuberculosis and a promising therapeutic target for tuberculosis. To facilitate mPTPB-based drug discovery, we identified α-sulfophenylacetic amide (SPAA) from cefsulodin, a third generation β-lactam cephalosporin antibiotic, as a novel pTyr pharmacophore for mPTPB. Structure-guided and fragment-based optimization of SPAA led to the most potent and selective mPTPB inhibitor 9, with a K i of 7.9 nM and more than 10,000-fold preference for mPTPB over a large panel of 25 phosphatases. Compound 9 also exhibited excellent cellular activity and specificity in blocking mPTPB function in macrophage. Given its novel structure, modest molecular mass, and extremely high ligand efficiency (0.46), compound 9 represents an outstanding lead compound for anti-TB drug discovery targeting mPTPB.