ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "lysosomal acid lipase"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Critical role of PPARγ in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis
    (Impact Journals, LLC, 2016-01-12) Zhao, Ting; Du, Hong; Blum, Janice S.; Yan, Cong; Department of Pathology & Laboratory Medicine, IU School of Medicine
    Lysosomal acid lipase (LAL) is a key enzyme controlling neutral lipid metabolic signaling in myeloid-derived suppressor cells (MDSCs). MDSCs from LAL-deficient (lal-/-) mice directly stimulate cancer cell proliferation. PPARγ ligand treatment inhibited lal-/- MDSCs stimulation of tumor cell growth and metastasis in vivo, and tumor cell proliferation and migration in vitro. In addition, PPARγ ligand treatment impaired lal-/- MDSCs transendothelial migration, and differentiation from lineage-negative cells. The corrective effects of PPARγ ligand on lal-/- MDSCs functions were mediated by regulating the mammalian target of rapamycin (mTOR) pathway, and subsequently blocking MDSCs ROS overproduction. Furthermore, in the myeloid-specific dominant-negative PPARγ (dnPPARγ) overexpression bitransgenic mouse model, tumor growth and metastasis were enhanced, and MDSCs from these mice stimulated tumor cell proliferation and migration. MDSCs with dnPPARγ overexpression showed increased transendothelial migration, overactivation of the mTOR pathway, and ROS overproduction. These results indicate that PPARγ plays a critical role in neutral lipid metabolic signaling controlled by LAL, which provides a mechanistic basis for clinically targeting MDSCs to reduce the risk of cancer proliferation, growth and metastasis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University