- Browse by Subject
Browsing by Subject "light use efficiency"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Drylands contribute disproportionately to observed global productivity increases(Elsevier, 2023-01-30) Wang, Shuai; Fu, Bojie; Wei, Fangli; Piao, Shilong; Maestre, Fernando T.; Wang, Lixin; Jiao, Wenzhe; Liu, Yanxu; Li, Yan; Li, Changjia; Zhao, Wenwu; Earth and Environmental Sciences, School of ScienceDrylands cover about 40% of the terrestrial surface and are sensitive to climate change, but their relative contributions to global vegetation greening and productivity increase in recent decades are still poorly known. Here, by integrating satellite data and biosphere modeling, we showed that drylands contributed more to global gross primary productivity (GPP) increase (65% ± 16%) than to Earth greening (33% ± 15%) observed during 1982–2015. The enhanced productivity per unit leaf area, i.e., light-use efficiency (LUE), was the mechanism behind this pattern. We also found that LUE was more sensitive to soil moisture than to atmospheric vapor pressure deficit (VPD) in drylands, while the opposite was observed (i.e., LUE was more sensitive to VPD) in humid areas. Our findings suggest the importance of using different moisture stress metrics in projecting the vegetation productivity changes of dry versus humid regions and highlight the prominent role of drylands as key controllers of the global carbon cycle.Item Enhanced coupling of light use efficiency and water use efficiency in arid and semi-arid environments(Wiley, 2021) Gao, Dexin; Wang, Shuai; Wang, Lixin; Li, Zidong; Pan, Ning; Liu, Yanxu; Fu, Bojie; Earth Sciences, School of ScienceBoth light use efficiency (LUE) and water use efficiency (WUE) play essential roles in ecosystem production. The extent to which ecosystem production is affected by the coupling between LUE and WUE remains unclear. In this study, we used data from flux measurements and weather stations in the Heihe River Basin, China, along a strong climatic gradient to quantify the relationship between LUE and WUE. Variations of LUE explained up to 85% of the variations of WUE. The contribution of LUE to WUE increased with increasing water stress. Pearson’s correlation coefficient between LUE and WUE increased from −0.12 to +0.63 with decreasing LUE. The coordination between LUE and WUE was essential to explaining the insensitive of WUE and GPP with increasing water stress. These results suggest that ecosystems enhance the coordination between light and water use when water stress is high. They enhance our understanding of the drought resilience of ecosystems and reduce uncertainties associated with the carbon cycle in drylands.