ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "layered materials"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    In Situ Construction of an Ultrarobust and Lithiophilic Li-Enriched Li–N Nanoshield for High-Performance Ge-Based Anode Materials
    (ACS, 2020-11) Xiong, Bing-Qing; Zhou, Xinwei; Xu, Gui-Liang; Liu, Xiang; Hu, Youcheng; Liu, Yuzi; Zhu, Likun; Shi, Chen-Guang; Hong, Yu-Hao; Wan, Si-Cheng; Sun, Cheng-Jun; Chen, Shengli; Huang, Ling; Sun, Shi-Gang; Amine, Khalil; Ke, Fu-Sheng; Mechanical and Energy Engineering, School of Engineering and Technology
    Alloy-based materials are promising anodes for rechargeable batteries because of their higher theoretical capacities in comparison to graphite. Unfortunately, the huge volume changes during cycling cause serious structural degradation and undesired parasitic reactions with electrolytes, resulting in fragile solid-electrolyte interphase formation and serious capacity decay. This work proposes to mitigate the volume changes and suppress the interfacial reactivity of Ge anodes without sacrificing the interfacial Li+ transport, through in situ construction of an ultrarobust and lithiophilic Li-enriched Li–N nanoshield, which demonstrated improved chemical, electrochemical, mechanical, and environmental stability. Therefore, it can serve as a versatile interlayer to facilitate Li+ transport and effectively block the attack of electrolyte solvents, thus boosting the long-term cycle stability and fast charging capability of Ge anodes. This work offers an alternative methodology to tune the interfaces of other electrode materials as well by screening for more N-containing compounds that can react with Li+ during battery operation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University