- Browse by Subject
Browsing by Subject "latency"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Critical-Path Aware Scheduling for Latency Efficient Broadcast in Duty-Cycled Wireless Sensor Networks(Hindawi, 2018) Le, Duc-Tai; Im, Giyeol; Le Duc, Thang; Zalyubovskiy, Vyacheslav V.; Kim, Dongsoo S.; Choo, Hyunseung; Electrical and Computer Engineering, School of Engineering and TechnologyMinimum latency scheduling has arisen as one of the most crucial problems for broadcasting in duty-cycled Wireless Sensor Networks (WSNs). Typical solutions for the broadcast scheduling iteratively search for nodes able to transmit a message simultaneously. Other nodes are prevented from transmissions to ensure that there is no collision in a network. Such collision-preventions result in extra delays for a broadcast and may increase overall latency if the delays occur along critical paths of the network. To facilitate the broadcast latency minimization, we propose a novel approach, critical-path aware scheduling (CAS), which schedules transmissions with a preference of nodes in critical paths of a duty-cycled WSN. This paper presents two schemes employing CAS which produce collision-free and collision-tolerant broadcast schedules, respectively. The collision-free CAS scheme guarantees an approximation ratio of in terms of latency, where denotes the maximum node degree in a network. By allowing collision at noncritical nodes, the collision-tolerant CAS scheme reduces up to 10.2 percent broadcast latency compared with the collision-free ones while requiring additional transmissions for the noncritical nodes experiencing collisions. Simulation results show that broadcast latencies of the two proposed schemes are significantly shorter than those of the existing methods.Item Epigenetic Regulation of Viral Biological Processes(MDPI, 2017-11-17) Balakrishnan, Lata; Milavetz, Barry; Biology, School of ScienceIt is increasingly clear that DNA viruses exploit cellular epigenetic processes to control their life cycles during infection. This review will address epigenetic regulation in members of the polyomaviruses, adenoviruses, human papillomaviruses, hepatitis B, and herpes viruses. For each type of virus, what is known about the roles of DNA methylation, histone modifications, nucleosome positioning, and regulatory RNA in epigenetic regulation of the virus infection will be discussed. The mechanisms used by certain viruses to dysregulate the host cell through manipulation of epigenetic processes and the role of cellular cofactors such as BRD4 that are known to be involved in epigenetic regulation of host cell pathways will also be covered. Specifically, this review will focus on the role of epigenetic regulation in maintaining viral episomes through the generation of chromatin, temporally controlling transcription from viral genes during the course of an infection, regulating latency and the switch to a lytic infection, and global dysregulation of cellular function.