ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "land management"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: A meta-analysis
    (Nature Publishing group, 2017-09-21) Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André; Earth Science, School of Science
    Although no-till (NT) has been promoted as an alternative land management practice to conventional tillage (CT), its impact on water quality, especially nitrate (NO3 −) loss remain controversial. We conducted a meta-analysis to compare NO3 − concentration and load in NT and CT systems via two major transport pathways: runoff and leaching. Rainfall variability, aridity, soil texture, tillage duration, crop species, and fertilizer type were used as co-varying factors. In comparison to CT, NT resulted in an overall increase of runoff NO3 − concentration, but similar runoff NO3 − load. In contrast, leachate NO3 − load was greater under NT than under CT, although leachate NO3 − concentration was similar under both tillage practices, indicating that the effect of NT on NO3 − load was largely determined by changes in water flux. Some deviations from these overall trends, however, were recorded with different co-varying variables. In comparison to CT, NT, for example, generated lower leachate NO3 − concentration and similar (instead of elevated) NO3 − leachate load from soybean fields (no N fertilizer applied). These results suggest NT needs to be complemented with other practices (e.g., cover crops, reduced N rate, split N application) in order to improve soil N retention and water quality benefits.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University