ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "knowledge extraction"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Data-To-Question Generation Using Deep Learning
    (IEEE, 2023) Koshy, Nicole; Dixit, Anshuman; Jadhav, Siddhi Shrikant; Penmatsa, Arun V.; Samanthapudi, Sagar V.; Kumar, Mothi Gowtham Asok; Anuyah, Sydney Oghenetega; Vemula, Gourav; Herzog, Patricia Snell; Bolchini, Davide
    Many publicly available datasets exist that can provide factual answers to a wide range of questions that benefit the public. Indeed, datasets created by governmental and non- governmental organizations often have a mandate to share data with the public. However, these datasets are often underutilized by knowledge workers due to the cumbersome amount of expertise and embedded implicit information needed for everyday users to access, analyze, and utilize their information. To seek solutions to this problem, this paper discusses the design of an automated process for generating questions that provide insight into a dataset. Given a relational dataset, our prototype system architecture follows a five-step process from data extraction, cleaning, pre-processing, entity recognition using deep learning, and questions formulation. Through examples of our results, we show that the questions generated by our approach are similar and, in some cases, more accurate than the ones generated by an AI engine like ChatGPT, whose question outputs while more fluent, are often not true to the facts represented in the original data. We discuss key limitations of our approach and the work to be done to bring to life a fully generalized pipeline that can take any data set and automatically provide the user with factual questions that the data can answer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University