ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "joint models"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Joint models for longitudinal and survival data
    (2014-07-11) Yang, Lili; Gao, Sujuan; Yu, Menggang; Tu, Wanzhu; Callahan, Christopher M.; Zollinger, Terrell
    Epidemiologic and clinical studies routinely collect longitudinal measures of multiple outcomes. These longitudinal outcomes can be used to establish the temporal order of relevant biological processes and their association with the onset of clinical symptoms. In the first part of this thesis, we proposed to use bivariate change point models for two longitudinal outcomes with a focus on estimating the correlation between the two change points. We adopted a Bayesian approach for parameter estimation and inference. In the second part, we considered the situation when time-to-event outcome is also collected along with multiple longitudinal biomarkers measured until the occurrence of the event or censoring. Joint models for longitudinal and time-to-event data can be used to estimate the association between the characteristics of the longitudinal measures over time and survival time. We developed a maximum-likelihood method to joint model multiple longitudinal biomarkers and a time-to-event outcome. In addition, we focused on predicting conditional survival probabilities and evaluating the predictive accuracy of multiple longitudinal biomarkers in the joint modeling framework. We assessed the performance of the proposed methods in simulation studies and applied the new methods to data sets from two cohort studies.
  • Loading...
    Thumbnail Image
    Item
    Joint Models for Multiple Longitudinal Processes and Time-to-event Outcome
    (Taylor & Francis, 2016) Yang, Lili; Yu, Menggang; Gao, Sujuan; Department of Biostatistics, Richard M. Fairbanks School of Public Health
    Joint models are statistical tools for estimating the association between time-to-event and longitudinal outcomes. One challenge to the application of joint models is its computational complexity. Common estimation methods for joint models include a two-stage method, Bayesian and maximum-likelihood methods. In this work, we consider joint models of a time-to-event outcome and multiple longitudinal processes and develop a maximum-likelihood estimation method using the expectation–maximization algorithm. We assess the performance of the proposed method via simulations and apply the methodology to a data set to determine the association between longitudinal systolic and diastolic blood pressure measures and time to coronary artery disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University