- Browse by Subject
Browsing by Subject "ionizing radiation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item FLASH Radiotherapy: Newsflash or Flash in The Pan?(Wiley, 2019) Maxim, Peter G.; Keall, Paul; Cai, Jing; Radiology and Imaging Sciences, School of MedicineIonizing radiation with ultra‐high dose rates (>40 Gy/s), known as FLASH, has drawn great attention since its introduction in 20141. It has been shown to markedly reduce radiation toxicity to normal healthy tissues while inhibiting tumor growth with similar efficiency as compared to conventional dose rate irradiation in pre‐clinical models. Some believe that FLASH irradiation holds great promises and is perhaps the biggest finding in recent radiotherapy history. However, others remain skeptical about the replication of FLASH efficacy in cancer patients with concerns about technical complexity, lack of understanding of its molecular radiobiological underpinnings, and reliability. This is the premise debated in this month's Point/Counterpoint.Item Targeting Base Excision Repair in Cancer: NQO1-Bioactivatable Drugs Improve Tumor Selectivity and Reduce Treatment Toxicity Through Radiosensitization of Human Cancer(Frontiers, 2020-08-19) Starcher, Colton L.; Pay, S. Louise; Singh, Naveen; Yeh, I.-Ju; Bhandare, Snehal B.; Su, Xiaolin; Huang, Xiumei; Bey, Erik A.; Motea, Edward A.; Boothman, David A.; Biochemistry and Molecular Biology, School of MedicineIonizing radiation (IR) creates lethal DNA damage that can effectively kill tumor cells. However, the high dose required for a therapeutic outcome also damages healthy tissue. Thus, a therapeutic strategy with predictive biomarkers to enhance the beneficial effects of IR allowing a dose reduction without losing efficacy is highly desirable. NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in the majority of recalcitrant solid tumors in comparison with normal tissue. Studies have shown that NQO1 can bioactivate certain quinone molecules (e.g., ortho-naphthoquinone and β-lapachone) to induce a futile redox cycle leading to the formation of oxidative DNA damage, hyperactivation of poly(ADP-ribose) polymerase 1 (PARP1), and catastrophic depletion of NAD+ and ATP, which culminates in cellular lethality via NAD+-Keresis. However, NQO1-bioactivatable drugs induce methemoglobinemia and hemolytic anemia at high doses. To circumvent this, NQO1-bioactivatable agents have been shown to synergize with PARP1 inhibitors, pyrimidine radiosensitizers, and IR. This therapeutic strategy allows for a reduction in the dose of the combined agents to decrease unwanted side effects by increasing tumor selectivity. In this review, we discuss the mechanisms of radiosensitization between NQO1-bioactivatable drugs and IR with a focus on the involvement of base excision repair (BER). This combination therapeutic strategy presents a unique tumor-selective and minimally toxic approach for targeting solid tumors that overexpress NQO1.