- Browse by Subject
Browsing by Subject "in vivo loading"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Influence of Mechanical Stimulation on the Quantity and Quality of Bone During Modeling(2016) Berman, Alycia G.; Wallace, Joseph; Na, Sungsoo; Li, Jiliang; Yoshida, KenSkeletal fractures due to bone disease impact an estimated 1.5 million Americans per year, creating a large economic burden on our society. Treatment of bone diseases prior to fracture often involves bisphosphonates (current gold-standard in osteoporosis care and prevention). Although bisphosphonates decrease fracture incidence, they often improve bone mass without regard for bone quality. Thus, although bisphosphonates increase the amount of bone present, the inherent bone material strength often decreases, creating a trade-off that increases the risk of atypical fractures after long-term use. This trade-off demonstrates the need for a treatment that targets both bone quality AND quantity. Although bone quality is important, the components of bone that contribute to bone quality are incompletely understood, making it difficult to create new pharmacological agents. With this in mind, my particular area of interest is in understanding how mechanical stimuli protects the formation of bone, leading to improved bone quality. Initially, this area was explored through use of tibial loading in a disease mouse model (osteolathyrism, induced by injection of beta-aminoproprionitrile) as a means of assessing how the body is able to compensate for decreased bone quality. The results of the BAPN and tibial loading studies indicated that injecting mice with BAPN may not be the ideal method to induce osteolathyrism. However, other intriguing results from the BAPN studies then led us into an exploration of how tibial loading itself contributes to bone quality.Item Skeletal loading in animals(2001) Robling, Alexander G; Burr, David B.; Turner, Charles HA number of in vivo skeletal loading models have been developed to test specific hypotheses addressing the key mechanical and biochemical signals involved in bone’s adaptive response to loading. Exercise protocols, osteotomy procedures, loading of surgically implanted pins, and force application through the soft tissues are common approaches to alter the mechanical environment of a bone. Although each animal overload model has a number of assets and limitations, models employing extrinsic forces allow greater control of the mechanical environment. Sham controls, for both surgical intervention (when performed) and loading, are required to unequivocally demonstrate that responses to loading are mechanically adaptive. Collectively, extrinsic loading models have fostered a greater understanding of the mechanical signals important for stimulating bone cells, and highlighted the roles of key signaling molecules in the adaptive response.