- Browse by Subject
Browsing by Subject "image representation"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Discerning Feature Supported Encoder for Image Representation(IEEE, 2019) Wang, Shuyang; Ding, Zhengming; Fu, Yun; Computer Information and Graphics Technology, School of Engineering and TechnologyInspired by the recent successes of deep architecture, the auto-encoder and its variants have been intensively explored on image clustering and classification tasks by learning effective feature representations. Conventional auto-encoder attempts to uncover the data's intrinsic structure, by constraining the output to be as much identical to the input as possible, which denotes that the hidden representation could faithfully reconstruct the input data. One issue that arises, however, is that such representations might not be optimized for specific tasks, e.g., image classification and clustering, since it compresses not only the discriminative information but also a lot of redundant or even noise within data. In other words, not all hidden units would benefit the specific tasks, while partial units are mainly used to represent the task-irrelevant patterns. In this paper, a general framework named discerning feature supported encoder (DFSE) is proposed, which integrates the auto-encoder and feature selection together into a unified model. Specifically, the feature selection is adapted to learned hidden-layer features to capture the task-relevant ones from the task-irrelevant ones. Meanwhile, the selected hidden units could in turn encode more discriminability only on the selected task-relevant units. To this end, our proposed algorithm can generate more effective image representation by distinguishing the task-relevant features from the task-irrelevant ones. Two scenarios of the experiments on image classification and clustering are conducted to evaluate our algorithm. The experiments on several benchmarks demonstrate that our method can achieve better performance over the state-of-the-art approaches in two scenarios.Item Leveraging the Invariant Side of Generative Zero-Shot Learning(IEEE, 2019) Li, Jingjing; Jing, Mengmeng; Lu, Ke; Ding, Zhengming; Zhu, Lei; Huang, Zi; Electrical and Computer Engineering, School of Engineering and TechnologyConventional zero-shot learning (ZSL) methods generally learn an embedding, e.g., visual-semantic mapping, to handle the unseen visual samples via an indirect manner. In this paper, we take the advantage of generative adversarial networks (GANs) and propose a novel method, named leveraging invariant side GAN (LisGAN), which can directly generate the unseen features from random noises which are conditioned by the semantic descriptions. Specifically, we train a conditional Wasserstein GANs in which the generator synthesizes fake unseen features from noises and the discriminator distinguishes the fake from real via a minimax game. Considering that one semantic description can correspond to various synthesized visual samples, and the semantic description, figuratively, is the soul of the generated features, we introduce soul samples as the invariant side of generative zero-shot learning in this paper. A soul sample is the meta-representation of one class. It visualizes the most semantically-meaningful aspects of each sample in the same category. We regularize that each generated sample (the varying side of generative ZSL) should be close to at least one soul sample (the invariant side) which has the same class label with it. At the zero-shot recognition stage, we propose to use two classifiers, which are deployed in a cascade way, to achieve a coarse-to-fine result. Experiments on five popular benchmarks verify that our proposed approach can outperform state-of-the-art methods with significant improvements.Item Marginalized Latent Semantic Encoder for Zero-Shot Learning(IEEE, 2019-06) Ding, Zhengming; Liu, Hongfu; Computer Information and Graphics Technology, School of Engineering and TechnologyZero-shot learning has been well explored to precisely identify new unobserved classes through a visual-semantic function obtained from the existing objects. However, there exist two challenging obstacles: one is that the human-annotated semantics are insufficient to fully describe the visual samples; the other is the domain shift across existing and new classes. In this paper, we attempt to exploit the intrinsic relationship in the semantic manifold when given semantics are not enough to describe the visual objects, and enhance the generalization ability of the visual-semantic function with marginalized strategy. Specifically, we design a Marginalized Latent Semantic Encoder (MLSE), which is learned on the augmented seen visual features and the latent semantic representation. Meanwhile, latent semantics are discovered under an adaptive graph reconstruction scheme based on the provided semantics. Consequently, our proposed algorithm could enrich visual characteristics from seen classes, and well generalize to unobserved classes. Experimental results on zero-shot benchmarks demonstrate that the proposed model delivers superior performance over the state-of-the-art zero-shot learning approaches.