- Browse by Subject
Browsing by Subject "hyperphosphatemia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Chemotherapy-Related Tumour Lysis Syndrome(Association of Kenya Physicians, 2007) Busakhala, N. W.; Association of Kenya Physicians Scientific Conference (11th : Mar. 2007 : Eldoret, Kenya)Two types of tumour lysis syndrome (TLS) ; 1. Laboratory TLS: 25% increase in potassium, phosphate and uric acid, or decline in calcium from baseline. Occur within 4 days of initiating chemotherapy. Patients on standard of care. Minimum of two out of four criteria. 2. Clinical tumour lysis syndrome: Laboratory TLS plus renal failure, cardiac arrhythmias or sudden death. A new definition has been suggested by Cairo and Bishop to include values above upper limit of normal. Study used Hande and Garrow definition.Item Hypophosphatemic rickets: Revealing Novel Control Points for Phosphate Homeostasis(Springer US, 2014-09) White, Kenneth E.; Hum, Julia M.; Econs, Michael J.; Department of Medical & Molecular Genetics, IU School of MedicineRapid and somewhat surprising advances have recently been made towards understanding the molecular mechanisms causing heritable disorders of hypophosphatemia. The results of clinical, genetic, and translational studies have interwoven novel concepts underlying the endocrine control of phosphate metabolism, with far-reaching implications for treatment of both rare, Mendelian diseases as well as common disorders of blood phosphate excess such as chronic kidney disease (CKD). In particular, diseases caused by changes in the expression and proteolytic control of the phosphaturic hormone Fibroblast growth factor-23 (FGF23) have come to the forefront in terms of directing new models explaining mineral metabolism. These hypophosphatemic disorders, as well as others resulting from independent defects in phosphate transport or metabolism, will be reviewed herein, and implications for emerging therapeutic strategies based upon these new findings will be discussed.Item Phenotypic and Genotypic Characterization and Treatment of a Cohort with Familial Tumoral Calcinosis/Hyperostosis-Hyperphosphatemia Syndrome(Wiley, 2016-10) Ramnitz, Mary Scott; Gourh, Pravitt; Goldbach-Mansky, Raphaela; Wodajo, Felasfa; Ichikawa, Shoji; Econs, Michael J.; White, Kenneth; Molinolo, Alfredo; Chen, Marcus Y.; Heller, Theo; Del Rivero, Jaydira; Seo-Mayer, Patricia; Arabshahi, Bita; Jackson, Malaka B.; Hatab, Sarah; McCarthy, Edward; Guthrie, Lori C.; Brillante, Beth A.; Gafni, Rachel I.; Collins, Michael T.; Medicine, School of MedicineFamilial tumoral calcinosis (FTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is a rare disorder caused by mutations in the genes encoding fibroblast growth factor-23 (FGF23), N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO. The result is functional deficiency of, or resistance to, intact FGF23 (iFGF23), causing hyperphosphatemia, increased renal tubular reabsorption of phosphorus (TRP), elevated or inappropriately normal 1,25-dihydroxyvitamin D3 (1,25D), ectopic calcifications and/or diaphyseal hyperostosis. Eight subjects with FTC/HHS were studied and treated. Clinical manifestations varied, even within families, ranging from asymptomatic to large, disabling calcifications. All subjects had hyperphosphatemia, increased TRP, and elevated or inappropriately normal 1,25D. C-terminal FGF23 was markedly elevated while iFGF23 was comparatively low, consistent with increased FGF23 cleavage. Radiographs ranged from diaphyseal hyperostosis to massive calcification. Two subjects with severe calcifications also had overwhelming systemic inflammation and elevated C-reactive protein (CRP). GALNT3 mutations were identified in 7 subjects; no causative mutation was found in the eighth. Biopsies from 4 subjects showed ectopic calcification and chronic inflammation, with areas of heterotopic ossification observed in 1 subject. Treatment with low phosphate diet, phosphate binders, and phosphaturia-inducing therapies was prescribed with variable response. One subject experienced complete resolution of a calcific mass after 13 months of medical treatment. In the 2 subjects with systemic inflammation, interleukin-1 (IL-1) antagonists significantly decreased CRP levels with resolution of calcinosis cutis and peri-lesional inflammation in one subject and improvement of overall well-being in both subjects. This cohort expands the phenotype and genotype of FTC/HHS and demonstrates the range of clinical manifestations despite similar biochemical profiles and genetic mutations. Overwhelming systemic inflammation has not been described previously in FTC/HHS; the response to IL-1 antagonists suggests that anti-inflammatory drugs may be useful adjuvants. In addition, this is the first description of heterotopic ossification reported in FTC/HHS, possibly mediated by the adjacent inflammation.