ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "high-dimensional data"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Empirical Likelihood Ratio Tests for Coe cients in High Dimensional Heteroscedastic Linear Models
    (ICSA, 2018) Wang, Honglang; Zhong, Ping-Shou; Cui, Yuehua; Mathematical Sciences, School of Science
    This paper considers hypothesis testing problems for a low-dimensional coefficient vector in a high-dimensional linear model with heteroscedastic variance. Heteroscedasticity is a commonly observed phenomenon in many applications, including finance and genomic studies. Several statistical inference procedures have been proposed for low-dimensional coefficients in a high-dimensional linear model with homoscedastic variance, which are not applicable for models with heteroscedastic variance. The heterscedasticity issue has been rarely investigated and studied. We propose a simple inference procedure based on empirical likelihood to overcome the heteroscedasticity issue. The proposed method is able to make valid inference even when the conditional variance of random error is an unknown function of high-dimensional predictors. We apply our inference procedure to three recently proposed estimating equations and establish the asymptotic distributions of the proposed methods. Simulation studies and real data applications are conducted to demonstrate the proposed methods.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University