- Browse by Subject
Browsing by Subject "high energy density"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item AQUEOUS LIQUID SOLUTIONS FOR LI-LIQUID BATTERY(Office of the Vice Chancellor for Research, 2012-04-13) Salim, Jason; Cheah, Seong Shen; Lee, Wen Chao; Mahootcheian Asl, Nina; Chen, Rongrong; Kim, YoungsikThe evolvement of Lithium-ion battery industries has begun to carry the industries to step in a new revolution. Consequently, high demand in high energy density batteries in many electronic and electrical appliances, espe-cially energy storage industries been emerged. This new type of batteries has been in extensive research, such as lithium-water battery. Lithium-water battery is a newly developed battery with lithium as the anode and water as the cathode. Lithium is known as one of the most reac-tive metals in periodic table. Therefore, rigorous reaction will be observed when lithium is reacted with water and hence potentially providing an ex-tremely high energy density. This rigorous reaction can be converted into electrical energy and can be stored in a cell. Lithium-water battery is novel and hence, there is no standardized design. In this presentation, lithium anode is separated from water by liquid electrolyte and a ceramic solid electrolyte. The glass-ceramic solid electro-lyte which has Li1.3Ti1.7Al0.3(PO4)3 composition plays an important role of the design of this lithium–water battery. The main purpose of the solid electro-lyte is to separate water from lithium, avoiding a dangerous exothermic re-action. Also, the presence of the super-ionic conductor ceramic can provide very high lithium ion conductivity. The different sizes of solid electrolytes were used in designing Li-liquid battery cell. The effect of the electrolyte size on the voltage of the cell was studied to optimize the cell design. Then, the aqueous solutions containing different chemicals were tested as the liquid cathodes, and their electro-chemical performance were compared to those of the pure DI water. Further results will be presented in the poster presentation.Item Finite element study of Li diffusion and stress in LiNi0.33Mn0.33Co0.33O2 cathode using microstructures reconstructed by synchrotron X-ray tomography(Office of the Vice Chancellor for Research, 2016-04-08) Wu, Linmin; Zhang, Yi; Zhang, JingLiNi0.33Mn0.33Co0.33O2 is a good substitute for LiCoO2 because of its good thermal stability and high energy density. In this study, the diffusion and stress in LiNi0.33Mn0.33Co0.33O2 cathode with realistic three-dimensional (3D) microstructures have been studied systematically. Synchrotron Xray tomography was used to obtain the 3D reconstructions of porous LiNi0.33Mn0.33Co0.33O2 microstructures. Li concentration distributions under various C-rates were investigated. The obtained charge/discharge curves under various C-rates were compared with the results from Newman’s model. The stress generation in the cathode was computed coupled with the diffusion. The hydrostatic stress, shear stress and von Mises stress in the particles were analyzed. The results show that the von Mises stress in particle boundaries is higher than the stress inside the particle due to the Li concentration gradient during discharge, which is consistent with the literature. Additionally, the von Mises stress near the particle contact region is much higher than other areas.