ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "halloysite clay nanotubes"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effect of a modified adhesive system with encapsulated arginine and calcium carbonate on dentin permeability
    (Wiley, 2023-08) AlShehri, Aram Mushabbab; Kamocki, Krzysztof; Viana, Ítallo Emídio Lira; Scaramucci, Taís; Hara, Anderson; Windsor, L. Jack; Platt, Jeffrey A.; Cook, Norman Blaine; Sochacki, Sabrina Feitosa; Biomedical and Applied Sciences, School of Dentistry
    To modify an adhesive system with halloysite clay nanotubes (HNTs) containing arginine and calcium carbonate and to evaluate their cytocompatibility, viscosity and efficacy in reducing dentin permeability. HNTs containing arginine and calcium carbonate were incorporated into the primer and adhesive of a three-step adhesive system (SBMP), and their viscosity was measured. Discs (n = 4/group) were prepared: SBMP (control), HNT-PR (modified primer), HNT-ADH (modified adhesive) and HNT-PR + ADH (modified primer and adhesive) were evaluated regarding cell death and viability. Dentin discs were prepared and randomly assigned into the following treatments (n = 10): NC (no treatment), SBMP, HNT-PR, HNT-ADH, HNT-PR + ADH and COL (Colgate® Sensitive Pro-relief™ prophylaxis paste). After, they were submitted to an erosive-abrasive cycling. Dentin permeability (hydraulic conductance) was evaluated at baseline, 24 h after treatment and after cycling. Both the modified primer and adhesive showed significantly higher viscosity than their controls. Group HNT-PR resulted in significantly higher cytotoxicity when compared to SBMP and HNT-PR + ADH groups. Group HNT-ADH resulted in the highest cell viability compared to all other groups. All groups showed significantly lower dentin permeability when compared to the NC group. Post-cycling, SBMP and HNT-ADH groups showed significantly lower permeability when compared to COL group. The addition of encapsulated arginine and calcium carbonate did not affect the cytocompatibility of the materials nor their ability to reduce dentin permeability.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University