- Browse by Subject
Browsing by Subject "hERG"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Efavirenz inhibits the human ether-a-go-go related current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers(Wiley, 2016-10) Abdelhady, Ahmed M.; Shugg, Tyler; Thong, Nancy; Li Lu, Jessica Bo; Kreutz, Yvonne; Jaynes, Heather A.; Robarge, Jason D.; Tisdale, James E.; Desta, Zeruesenay; Overholser, Brian R.; Pharmacology and Toxicology, School of MedicineBackground Efavirenz (EFV) has been associated with torsade de pointes despite marginal QT interval lengthening. Since EFV is metabolized by the cytochrome P450 (CYP) 2B6 enzyme, we hypothesized that EFV would lengthen the rate-corrected QT (QTcF) interval in carriers of the CYP2B6*6 decreased functional allele. Objective The primary objective of this study was to evaluate EFV-associated QT interval changes with regard to CYP2B6 genotype and to explore mechanisms of QT interval lengthening. Methods EFV was administered to healthy volunteers (n=57) as a single 600 mg dose followed by multiple doses to steady-state. Subjects were genotyped for known CYP2B6 alleles and ECGs and EFV plasma concentrations were obtained serially. Whole-cell, voltage-clamp experiments were performed on cells stably expressing hERG and exposed to EFV in the presence and absence of CYP2B6 expression. Results EFV demonstrated a gene-dose effect and exceeded the FDA criteria for QTcF interval prolongation in CYP2B6*6/*6 carriers. The largest mean time-matched differences ΔΔQTcF were observed at 6 hrs (14 ms; 95% CI [1; 27]), 12 hrs (18 ms; 95% CI [−4; 40] and 18 hrs (6 ms; 95% CI [−1; 14]) in the CYP2B6*6/*6 genotype. EFV concentrations exceeding 0.4 µg/mL significantly inhibited outward hERG tail currents (P<0.05). Conclusions This study demonstrates that homozygous carriers of CYP2B6*6 allele may be at increased risk for EFV-induced QTcF interval prolongation via inhibition of hERG.Item MicroRNA 362-3p Reduces hERG-related Current and Inhibits Breast Cancer Cells Proliferation(International Institute of Anticancer Research, 2019-12) Assiri, Abdullah A.; Mourad, Noha; Shao, Minghai; Kiel, Patrick; Liu, Wanqing; Skaar, Todd C.; Overholser, Brian R.; Pharmacology and Toxicology, School of MedicineBackground/Aim: hERG potassium channels enhance tumor invasiveness and breast cancer proliferation. MicroRNA (miRNA) dysregulation during cancer controls gene regulation. The objective of this study was to identify miRNAs that regulate hERG expression in breast cancer. Materials and Methods: Putative miRNAs targeting hERG were identified by bioinformatic approaches and screened using a 3’UTR luciferase assay. Functional assessments of endogenous hERG regulation were made using whole-cell electrophysiology, proliferation assays, and cell-cycle analyses following miRNA, hERG siRNA, or control transfection. Results: miR-362-3p targeted hERG 3’UTR and was associated with higher survival rates in patients with breast cancer (HR=0.39, 95%CI=0.18-0.82). Enhanced miR-362-3p expression reduced hERG expression, peak current, and cell proliferation in cultured breast cancer cells (p<0.05). Conclusion: miR-362-3p mediates the transcriptional regulation of hERG and is associated with survival in breast cancer. The potential for miR-362-3p to serve as a biomarker and inform therapeutic strategies warrants further investigation.