- Browse by Subject
Browsing by Subject "groundwater"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Diverse stakeholders create collaborative, multilevel basin governance for groundwater sustainability(University of California Agriculture and Natural Resources, 2018-03-13) Conrad, Esther; Moran, Tara; DuPraw, Marcelle E.; Ceppos, David; Martinez, Janet; Blomquist, William; Political Science, School of Liberal ArtsThe Sustainable Groundwater Management Act (SGMA) is introducing significant changes in the way groundwater is governed for agricultural use. It requires the formation of groundwater sustainability agencies (GSAs) to manage groundwater basins for sustainability with the engagement of all users. That presents opportunities for collaboration, as well as challenges, particularly in basins with large numbers of agricultural water users who have longstanding private pumping rights. The GSA formation process has resulted in the creation of multiple GSAs in many such basins, particularly in the Central Valley. In case studies of three basins, we examine agricultural stakeholders' concerns about SGMA, and how these are being addressed in collaborative approaches to groundwater basin governance. We find that many water districts and private pumpers share a strong interest in maintaining local autonomy, but they have distinct concerns and different options for forming and participating in GSAs. Multilevel collaborative governance structures may help meet SGMA's requirements for broad stakeholder engagement, our studies suggest, while also addressing concerns about autonomy and including agricultural water users in decision-making.Item Nonrainfall water origins and formation mechanisms(AAAS, 2017-03-01) Kaseke, Kudzai Farai; Wang, Lixin; Seely, Mary K.; Department of Earth Sciences, School of ScienceDryland ecosystems cover 40% of the total land surface on Earth and are defined broadly as zones where precipitation is considerably less than the potential evapotranspiration. Nonrainfall waters (for example, fog and dew) are the least-studied and least-characterized components of the hydrological cycle, although they supply critical amounts of water for dryland ecosystems. The sources of nonrainfall waters are largely unknown for most systems. In addition, most field and modeling studies tend to consider all nonrainfall inputs as a single category because of technical constraints, which hinders prediction of dryland responses to future warming conditions. This study uses multiple stable isotopes (2H, 18O, and 17O) to show that fog and dew have multiple origins and that groundwater in drylands can be recycled via evapotranspiration and redistributed to the upper soil profile as nonrainfall water. Surprisingly, the non–ocean-derived (locally generated) fog accounts for more than half of the total fog events, suggesting a potential shift from advection-dominated fog to radiation-dominated fog in the fog zone of the Namib Desert. This shift will have implications on the flora and fauna distribution in this fog-dependent system. We also demonstrate that fog and dew can be differentiated on the basis of the dominant fractionation (equilibrium and kinetic) processes during their formation using the 17O-18O relationship. Our results are of great significance in an era of global climate change where the importance of nonrainfall water increases because rainfall is predicted to decline in many dryland ecosystems. Fog and dew in the Namib Desert have multiple origins and their formation can be differentiated using stable isotopes. Fog and dew in the Namib Desert have multiple origins and their formation can be differentiated using stable isotopes.Item RIPARIAN ZONE HYDROLOGY AND HYDROGEOMORPHIC SETTING OF A GLACIATED VALLEY IN CENTRAL INDIANA(2007) Smith, Andrew Philip; Vidon, Philippe G.; Tedesco, Lenore P.; Doss, Paul K.This study investigates the hydrological functioning of a riparian zone in central Indiana in a glaciated valley with concave topography (16% slope gradient) and ground water seeps on the valley walls. Unlike sites found in most riparian zone studies with lateral ground water inputs (Clement et al., 2003; Jordan et al., 1993; Blicher-Mathiesen and Hoffman, 1999; Hoffman et al., 2000), the site in this study is connected to thin, permeable upland sediments (≈2 m). The objectives of this research include: 1) understanding the influence of the hydrogeomorphic (HGM) setting on riparian hydrology (including determining the sources of water to the site), 2) determining how the HGM setting influences riparian zone water quality functioning, and 3) comparing the results from this site with conceptual models of riparian zone hydrologic functioning. Water chemistry and hydrometric data were collected over a 16-month period. Three factors influence riparian zone hydrological functioning at the site: 1) the nature of water contributions from upland sources, 2) riparian zone soil texture, and 3) the location of a preWisconsinan till unit. When the uplands are contributing water to the riparian zone a shallow water table is found near the hillslope and ground water flows from the hillslope to the stream. Conversely, when upland contributions cease a large water table drop occurs and ground water flows in a downvalley direction. Fine textured soils near the hillslope result in shallow water tables and small ground water fluxes. Hydrometric data, water chemistry, and statistical analyses suggest water from an intertill layer adjacent to the site is the primary source of water to the site. NO3- concentrations decreased in ground water flow in the riparian zone suggesting the site is removing nutrients. A preWisconsinan glacial till deposit at shallow depths in the riparian zone limits ground water flow to horizontal flow paths. Overall, the hydrologic functioning of the site agrees well with riparian zone conceptual models (Vidon and Hill, 2004a; Vidon and Hill, 2004b; Devito et al., 1996; Hill, 2000; Baker et al., 2001; Burt et al., 2002). The results of this study are important additions towards conceptualizing riparian zone hydrologic functioning.Item Water sources of major plant species along a strong climatic gradient in the inland Heihe River Basin(Springer, 2020-10) Zhao, Liangju; Xie, Cong; Liu, Xiaohong; Wang, Ninglian; Yu, Zhang; Dong, Xiying; Wang, Lixin; Earth Sciences, School of ScienceAim Knowledge on vegetation water sources is crucial to understand the ecohydrological processes and ecological management of arid and semi-arid ecosystems. The identification and quantification of plant water uptake from precipitation, soil and groundwater remain challenging along large climatic gradient. Methods Stable oxygen isotope compositions of xylem water, soil water and groundwater were analyzed to assess seasonal and spatial patterns of water uptake of 11 major plant species along the Heihe River Basin. Conclusions In the upper reaches, soil water recharged by precipitation was the main plant water source, and plants extracted water from the shallow soil water in wet season while used more deep soil water in dry season. In the middle reaches of desert-oasis ecotone, the water sources of shrubs shifted between soil moisture and groundwater depending on variations of precipitation and groundwater level, while shrubs at Gobi relied on deep soil water and shallow soil water after rainfall. In the lower reaches, the driest part of the region, groundwater and deep soil water were main water sources for the riparian plants. Groundwater was stable water source for shrubs growing on the planted shrubland, and soil water was stable water sources for shrubs growing at Gobi. Our results also revealed that water use strategies of the same species were plastic under different groundwater level and precipitation. This study identified water use patterns of different plant species along a climatic gradient and provided scientific implication for water management of different ecosystems of the arid and semi-arid ecosystems.