- Browse by Subject
Browsing by Subject "global agriculture"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions(Office of the Vice Chancellor for Research, 2013-04-05) Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengzia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, KrantiWith climate change becoming an increasingly pressing issue together with a world population of 7 billion people in 2011, significant pressure is put on global agriculture and forestry. Although treated separately in national GHG inventories, there is little doubt that both categories are closely linked and climate policies targeting agriculture will have spillover effects on forestry and vice versa. Hence, the implementation of large-scale agricultural policies is prone to unintended consequences. For this poster, we analyze the hypothesis that a reduction of cattle in the U.S. causes a net increase in GHG emissions on a global scale. We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of U.S. beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO2-equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally.Item Where does all the biofuel go? Fuel efficiency gains and its effects on global agricultural production(Elsevier, 2021-01) Dumortier, Jerome; Carriquiry, Miguel; Elobeid, Amani; School of Public and Environmental AffairsIncreasing biofuel production over the last decade and biofuel policies in Brazil, the European Union, and the United States have changed the global agricultural landscape in terms of land-use, commodity prices, and trade. Increasing fuel efficiency and electrification of the vehicle stock is projected to lower gasoline, diesel, and biofuel demand in the future. In this analysis, we quantify the effects of a 30% reduction in ethanol consumption in the U.S. and the European Union triggered by higher vehicle fleet fuel efficiency on global agricultural markets. Our results show decreases in global commodity prices by 1.9%–6.6% and a slight decrease in global cropland by 0.3%. Major changes occur in trade patterns with U.S. corn exports increasing by 30.3%. Global greenhouse gas emissions are lower due to the overall reduction in cropland. Gasoline and diesel consumption of the vehicle fleet is not changing rapidly but is a long-term process because vehicles are on average in operation for 10 or more years. Consequently, there are important long-term policy implications from changes in fuel efficiency requirements or ethanol blending limits that affect commodity prices, trade, and greenhouse gas emissions.