- Browse by Subject
Browsing by Subject "genome-wide association study"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Common Variants Near ZIC1 and ZIC4 in Autopsy-Confirmed Multiple System Atrophy(Wiley, 2022-10) Hopfner, Franziska; Tietz, Anja K.; Ruf, Viktoria C.; Ross, Owen A.; Koga, Shunsuke; Dickson, Dennis; Aguzzi, Adriano; Attems, Johannes; Beach, Thomas; Beller, Allison; Cheshire, William P.; van Deerlin, Vivianna; Desplats, Paula; Deuschl, Günther; Duyckaerts, Charles; Ellinghaus, David; Evsyukov, Valentin; Flanagan, Margaret Ellen; Franke, Andre; Frosch, Matthew P.; Gearing, Marla; Gelpi, Ellen; van Gerpen, Jay A.; Ghetti, Bernardino; Glass, Jonathan D.; Grinberg, Lea T.; Halliday, Glenda; Helbig, Ingo; Höllerhage, Matthias; Huitinga, Inge; Irwin, David John; Keene, Dirk C.; Kovacs, Gabor G.; Lee, Edward B.; Levin, Johannes; Martí, Maria J.; Mackenzie, Ian; McKeith, Ian; Mclean, Catriona; Mollenhauer, Brit; Neumann, Manuela; Newell, Kathy L.; Pantelyat, Alex; Pendziwiat, Manuela; Peters, Annette; Porcel, Laura Molina; Rabano, Alberto; Matěj, Radoslav; Rajput, Alex; Rajput, Ali; Reimann, Regina; Scott, William K.; Seeley , William; Selvackadunco, Sashika; Simuni, Tanya; Stadelmann, Christine; Svenningsson, Per; Thomas, Alan; Trenkwalder, Claudia; Troakes, Claire; Trojanowski, John Q.; Uitti, Ryan J.; White, Charles L.; Wszolek, Zbigniew K.; Xie, Tao; Ximelis, Teresa; Justo, Yebenes; Alzheimer’s Disease Genetics Consortium; Müller, Ulrich; Schellenberg, Gerard D.; Herms, Jochen; Kuhlenbäumer, Gregor; Höglinger, Günter; Pathology and Laboratory Medicine, School of MedicineBackground: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. Objective: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. Methods: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). Results: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10−6, all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). Interpretation: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy.Item Genetic Influences on Plasma Homocysteine Levels in African Americans and Yoruba Nigerians.(IOS Press, 2015) Kim, Sungeun; Nho, Kwangsik; Ramanan, Vijay K.; Lai, Dongbing; Foroud, Tatiana M.; Lane, Katie; Murrell, Jill R.; Gao, Sujuan; Hall, Kathleen S.; Unverzagt, Frederick W.; Baiyewu, Olusegun; Ogunniyi, Adesola; Gureje, Oye; Kling, Mitchel A.; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima; Hendrie, Hugh C.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicinePlasma homocysteine, a metabolite involved in key cellular methylation processes seems to be implicated in cognitive functions and cardiovascular health with its high levels representing a potential modifiable risk factor for Alzheimer’s disease (AD) and other dementias. A better understanding of the genetic factors regulating homocysteine levels, particularly in non-white populations, may help in risk stratification analyses of existing clinical trials and may point to novel targets for homocysteine-lowering therapy. To identify genetic influences on plasma homocysteine levels in individuals with African ancestry, we performed a targeted gene and pathway-based analysis using a priori biological information and then to identify new association performed a genome-wide association study. All analyses used combined data from the African American and Yoruba cohorts from the Indianapolis-Ibadan Dementia Project. Targeted analyses demonstrated significant associations of homocysteine and variants within the CBS (Cystathionine beta-Synthase) gene. We identified a novel genome-wide significant association of the AD risk gene CD2AP (CD2-associated protein) with plasma homocysteine levels in both cohorts. Minor allele (T) carriers of identified CD2AP variant (rs6940729) exhibited decreased homocysteine level. Pathway enrichment analysis identified several interesting pathways including the GABA receptor activation pathway. This is noteworthy given the known antagonistic effect of homocysteine on GABA receptors. These findings identify several new targets warranting further investigation in relation to the role of homocysteine in neurodegeneration.Item Genetic variants in PDSS1 and SLC16A6 of the ketone body metabolic pathway predict cutaneous melanoma-specific survival(Wiley, 2020-03-31) Dai, Wei; Liu, Hongliang; Chen, Ka; Xu, Xinyuan; Qian, Danwen; Luo, Sheng; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Li, Chunying; Wei, Qingyi; Epidemiology, School of Public HealthA few single-nucleotide polymorphisms (SNPs) have been identified to be associated with cutaneous melanoma (CM) survival though genome-wide association studies, but stringent multiple testing corrections required for the hypothesis-free testing may have masked some true associations. Using a hypothesis-driven analysis approach, we sought to evaluate associations between SNPs in ketone body metabolic pathway genes and CM survival. We comprehensively assessed associations between 4,196 (538 genotyped and 3,658 imputed) common SNPs in ketone body metabolic pathway genes and CM survival, using a dataset of 858 patients of a case-control study from The University of Texas M.D. Anderson Cancer Center as the discovery set and another dataset of 409 patients from the Nurses’ Health Study and the Health Professionals Follow-up Study as the replication set. There were 95/858 (11.1%) and 48/409 (11.5%) patients who died of CM, respectively. We identified two independent SNPs (i.e., PDSS1 rs12254548 G>C and SLC16A6 rs71387392 G>A) that were associated with CM survival, with allelic hazards ratios of 0.58 (95% confidence interval [CI]=0.44-0.76, P=9.00×10−5) and 1.98 (95% CI=1.34-2.94, P=6.30×10−4), respectively. Additionally, associations between genotypes of the SNPs and mRNA expression levels of their corresponding genes support the biologic plausibility of a role for these two variants in CM tumor progression and survival. Once validated by larger studies, PDSS1 rs12254548 and SLC16A6 rs71387392 may be biomarker for CM survival.Item Genetic variants in the integrin signaling pathway genes predict cutaneous melanoma survival(Wiley, 2017-03-15) Li, Hongyu; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Xu, Yinghui; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Han, Jiali; Wei, Qingyi; Epidemiology, School of Public HealthTo identify genetic variants involved in prognosis of cutaneous melanoma (CM), we investigated associations of single nucleotide polymorphisms (SNPs) of genes in the integrin signaling pathway with CM survival by re-analyzing a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center (MDACC), and then validated significant SNPs in another GWAS from Harvard University. In the MDACC study, 1,148 SNPs were significantly associated with CM-specific survival (CMSS) (P ≤ 0.050 and false-positive report probability ≤ 0.20), and nine SNPs were validated in the Harvard study (P ≤ 0.050). Among these, three independent SNPs (i.e., DOCK1 rs11018104 T>A, rs35748949 C>T and PAK2 rs1718404 C>T) showed a predictive role in CMSS, with an effect-allele attributed adjusted hazards ratio [adjHR of 1.50 (95% confidence interval (CI) = 1.18-1.90, P = 7.46E-04), 1.53 (1.18-1.97, 1.18E-03) and 0.58 (0.45-0.76, 5.60E-05), respectively]. Haplotype analysis revealed that a haplotype carrying two risk alleles A-T in DOCK1 was associated with the poorest survival in both MDACC (adjHR=1.73, 95% CI = 1.19-2.50, P = 0.004) and Harvard (adjHR = 1.95, 95% CI=1.14-3.33, P = 0.010) studies. In addition, patients with an increasing number of unfavorable genotypes (NUGs) for these three SNPs had a poorer survival. Incorporating NUGs with clinical variables showed a significantly improved ability to classify CMSS (AUC increased from 86.8% to 88.6%, P = 0.031). Genetic variants in the integrin signaling pathway may independently or jointly modulate the survival of CM patients. Further large, prospective studies are needed to validate these findings.Item Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival(Wiley, 2017) Xu, Yinghui; Wang, Yanru; Liu, Hongliang; Shi, Qiong; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Hyslop, Terry; Li, Xin; Han, Jiali; Wei, Qingyi; Department of Epidemiology, School of Public HealthMetzincins are key molecules in the degradation of the extracellular matrix and play an important role in cellular processes such as cell migration, adhesion, and cell fusion of malignant tumors, including cutaneous melanoma (CM). We hypothesized that genetic variants of the metzincin metallopeptidase family genes would be associated with CM-specific survival (CMSS). To test this hypothesis, we first performed Cox proportional hazards regression analysis to evaluate the associations between genetic variants of 75 metzincin metallopeptidase family genes and CMSS using the dataset from the genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC) which included 858 non-Hispanic white patients with CM, and then validated using the dataset from the Harvard GWAS study which had 409 non-Hispanic white patients with invasive CM. Four independent SNPs (MMP16 rs10090371 C>A, ADAMTS3 rs788935 T>C, TLL2 rs10882807 T>C and MMP9 rs3918251 A>G) were identified as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) of 1.73 (1.32-2.29, 9.68E-05), 1.46 (1.15-1.85, 0.002), 1.68 (1.31-2.14, 3.32E-05) and 0.67 (0.51-0.87, 0.003), respectively, in the meta-analysis of these two GWAS studies. Combined analysis of risk genotypes of these four SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (Ptrend < 0.001). An improvement was observed in the prediction model (area under the curve [AUC] = 81.4% vs. 78.6%), when these risk genotypes were added to the model containing non-genotyping variables. Our findings suggest that these genetic variants may be promising prognostic biomarkers for CMSS.Item Genetic Variants in WNT2B and BTRC Predict Melanoma Survival(Elsevier, 2017) Shu, Qiong; Liu, Hongliang; Han, Peng; Li, Chunying; Wang, Yanru; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Han, Jiali; Wei, Qingyi; Department of Epidemiology, Richard M. Fairbanks School of Public HealthCutaneous melanoma (CM) is the most lethal skin cancer. The Wnt pathway has an impact on development, invasion and metastasis of CM, thus likely affecting CM prognosis. Using data from a published genome-wide association study (GWAS) from The University of Texas M.D. Anderson Cancer Center, we assessed the associations of 19,830 common single-nucleotide polymorphisms (SNPs) in 151 Wnt pathway autosomal genes with CM-specific survival (CMSS) and then validated significant SNPs in another GWAS from Harvard University. In the single-locus analysis, 1,855 SNPs were significantly associated with CMSS at P < 0.05, of which 547 SNPs were still considered noteworthy after the correction by the false positive report probability. In the replication, two SNPs remained significantly associated with CMSS after multiple comparison correction. By performing functional prediction and stepwise selection, we identified two independent SNPs (i.e., WNT2B rs1175649 G>T and BTRC rs61873997 G>A) that showed a predictive role in CMSS, with an effect-allele-attributed hazards ratio [adjHR of 1.99 (95% confidence interval (CI) = 1.41-2.81, P = 8.10E-05) and 0.61 (0.46-0.80, 3.12E-04), respectively]. Collectively, these variants in the Wnt pathway genes may be biomarkers for outcomes of CM patients, if validated by larger studies.Item Genome-wide analysis identifies 12 loci influencing human reproductive behavior(Nature, 2016-10) Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellman, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverly; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco J. C.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J. F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G.; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L. R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C.; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A.; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W. J. H.; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefannson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthThe genetic architecture of human reproductive behavior—age at first birth (AFB) and number of children ever born (NEB)—has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.Item Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria(Wiley, 2019-06-04) Lai, Dongbing; Wetherill, Leah; Bertelsen, Sarah; Carey, Caitlin E.; Kamarajan, Chella; Kapoor, Manav; Meyers, Jacquelyn L.; Anokhin, Andrey P.; Bennett, David A.; Bucholz, Kathleen K.; Chang, Katharine K.; Jager, Philip L. De; Dick, Danielle M.; Hesselbrock, Victor; Kramer, John; Kuperman, Samuel; Nurnberger, John I.; Raj, Towfique; Schuckit, Marc; Scott, Denise M.; Taylor, Robert E.; Tischfield, Jay; Hariri, Ahmad R.; Edenberg, Howard J.; Agrawal, Arpana; Bogdan, Ryan; Porjesz, Bernice; Goate, Alison M.; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineGenome-wide association studies (GWAS) of alcohol dependence (AD) have reliably identified variation within alcohol metabolizing genes (e.g., ADH1B) but have inconsistently located other signals, which may be partially attributable to symptom heterogeneity underlying the disorder. We conducted GWASs of DSM-IV AD (primary analysis), DSM-IV AD criterion count (secondary analysis), and individual dependence criteria (tertiary analysis) among 7,418 (1,121 families) European American (EA) individuals from the Collaborative Study on the Genetics of Alcoholism (COGA). Trans-ancestral meta-analyses combined these results with data from 3,175 (585 families) African American (AA) individuals from COGA. In the EA GWAS, three loci were genome-wide significant: rs1229984 in ADH1B for AD criterion count (p=4.16E-11) and Desire to cut drinking (p=1.21E-11); rs188227250 (chromosome 8, Drinking more than intended, p=6.72E-09); rs1912461 (chromosome 15, Time spent drinking, p=1.77E-08). In the trans-ancestral meta-analysis, rs1229984 was associated with multiple phenotypes and two additional loci were genome-wide significant: rs61826952 (chromosome 1, DSM-IV AD, p=8.42E-11); rs7597960 (chromosome 2, Time spent drinking, p=1.22E-08). Associations with rs1229984 and rs18822750 were replicated in independent datasets. Polygenic risk scores derived from the EA GWAS of AD predicted AD in two EA datasets (p<0.01; 0.61-1.82% of variance). Identified novel variants (i.e., rs1912461, rs61826952) were associated with differential central evoked theta power (loss minus gain; p=0.0037) and reward-related ventral striatum reactivity (p=0.008), respectively. This study suggests that studying individual criteria may unveil new insights into the genetic etiology of AD liability.Item Identification of Novel Genes Associated with Cortical Thickness in Alzheimer’s Disease: Systems Biology Approach to Neuroimaging Endophenotype(IOS Press, 2020) Kim, Bo-Hyun; Choi, Yong-Ho; Yang, Jin-Ju; Kim, SangYun; Nho, Kwangsik; Lee, Jong-Min; Radiology and Imaging Sciences, School of MedicineAlzheimer’s disease (AD) is a common neurodegenerative disorder characterized by a heterogeneous distribution of pathological changes in the brain. Cortical thickness is one of the most sensitive imaging biomarkers for AD representing structural atrophy. The purpose of this study is to identify novel genes associated with cortical thickness. We measured the whole-brain mean cortical thickness from magnetic resonance imaging (MRI) scans in 919 subjects from the Alzheimer’s Disease Neuroimaging Initiative cohort, including 163 AD patients, 488 mild cognitive impairment patients, and 268 cognitively normal participants. Based on the single-nucleotide polymorphism (SNP)-based genome-wide association study, we performed gene-based association analysis for mean cortical thickness. Furthermore, we performed expression quantitative trait loci, protein-protein interaction network, and pathway analysis to identify biologically functional information. We identified four genes (B4GALNT1, RAB44, LOC101927583, and SLC26A10), two pathways (cyclin-dependent protein kinase holoenzyme complex and nuclear cyclin-dependent protein kinase holoenzyme complex), and one protein-protein interaction (B4GALNT1 and GALNT8 pair). These genes are involved in protein degradation, GTPase activity, neuronal loss, and apoptosis. The identified pathways are involved in the cellular processes and neuronal differentiation, which contribute to neuronal loss that is responsible for AD. Furthermore, the most significant SNP (rs12320537) in B4GALNT1 is associated with expression levels of B4GALNT1 in several brain regions. Thus, the identified genes and pathways provide deeper mechanistic insight into the molecular basis of brain atrophy in AD.