- Browse by Subject
Browsing by Subject "genetics"
Now showing 1 - 10 of 140
Results Per Page
Sort Options
Item Acetylation regulates DNA repair mechanisms in human cells(Informa UK (Taylor & Francis), 2016-06-02) Piekna-Przybylska, Dorota; Bambara, Robert A.; Balakrishnan, Lata; Department of Biology, School of ScienceThe p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.Item Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers(American Association for Cancer Research, 2015-04-15) Lombardi, Anne J.; Hoskins, Elizabeth E.; Foglesong, Grant D.; Wikenheiser-Brokamp, Kathryn A.; Wiesmüller, Lisa; Hanenberg, Helmut; Andreassen, Paul R.; Jacobs, Allison J.; Olson, Susan B.; Keeble, Winifred W.; Hays, Laura E.; Wells, Susanne I.; Department of Medical & Molecular Genetics, IU School of MedicinePURPOSE: Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease. EXPERIMENTAL DESIGN: Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fancc(-/-) mice, we sought to define Fanconi anemia-dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ). RESULTS: Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia-dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia-deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation. CONCLUSIONS: The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual.Item Adaptation of Subjective Responses to Alcohol is Affected by an Interaction of GABRA2 Genotype and Recent Drinking(Wiley Blackwell (Blackwell Publishing), 2015-07) Kosobud, Ann E. K.; Wetherill, Leah; Plawecki, Martin H.; Kareken, David A.; Liang, Tiebing; Nurnberger, John L.; Windisch, Kyle; Xuei, Xiaoling; Edenberg, Howard J.; Foroud, Tatiana M.; O’Connor, Sean J.; Department of Psychiatry, IU School of MedicineBACKGROUND: Subjective perceptions of alcohol intoxication are associated with altered risk for alcohol abuse and dependence. Acute adaptation of these perceptions may influence such risk and may involve genes associated with pleasant perceptions or the relief of anxiety. This study assessed the effect of variation in the GABAA receptor genes GABRG1 and GABRA2 and recent drinking history on the acute adaptation of subjective responses to alcohol. METHODS: One hundred and thirty-two nondependent moderate to heavy drinkers, aged 21 to 27, participated in 2 single-blind, counterbalanced sessions, approximately 1 week apart. One session was an intravenous alcohol "clamp," during which breath alcohol concentration was held steady at 60 mg/dl (60 mg%) for 3 hours, and the other an identical session using saline infusion. Subjective perceptions of Intoxication, Enjoyment, Stimulation, Relaxation, Anxiety, Tiredness, and Estimated Number of Drinks were acquired before (baseline), and during the first and final 45 minutes of the clamp. A placebo-adjusted index of the subject's acute adaptation to alcohol was calculated for each of the 7 subjective measures and used in a principal component analysis to create a single aggregate estimate for each subject's adaptive response to alcohol. Analysis of covariance tested whether GABRA2 and GABRG1 single nucleotide polymorphism (SNP) genotypes, gender, placebo session, family history of alcoholism, recent drinking history, and the genotype × recent drinking history interaction significantly predicted the adaptive response. RESULTS: Recent drinking history (p = 0.01), and recent drinking history × genotype interaction (p = 0.01) were significantly associated with acute adaptation of the subjective responses to alcohol for the GABRA2 SNP rs279858. CONCLUSIONS: Higher recent drinking was found to be associated with reduced acute tolerance to positive, stimulating effects of alcohol in carriers of the rs279858 risk allele. We postulate that the GABRA2 effect on alcohol dependence may, in part, be due to its effect on subjective responses to alcohol.Item Advances in translational bioinformatics facilitate revealing the landscape of complex disease mechanisms(Springer (Biomed Central Ltd.), 2014) Yang, Jack Y.; Dunker, A. Keith; Liu, Jun S.; Qin, Xiang; Arabnia, Hamid R.; Yang, William; Niemierko, Andrzej; Chen, Zhongxue; Luo, Zuojie; Wang, Liangjiang; Liu, Yunlong; Xu, Dong; Deng, Youping; Tong, Weida; Yang, Mary Qu; Department of Biochemistry and Molecular Biology, IU School of MedicineAdvances of high-throughput technologies have rapidly produced more and more data from DNAs and RNAs to proteins, especially large volumes of genome-scale data. However, connection of the genomic information to cellular functions and biological behaviours relies on the development of effective approaches at higher systems level. In particular, advances in RNA-Seq technology has helped the studies of transcriptome, RNA expressed from the genome, while systems biology on the other hand provides more comprehensive pictures, from which genes and proteins actively interact to lead to cellular behaviours and physiological phenotypes. As biological interactions mediate many biological processes that are essential for cellular function or disease development, it is important to systematically identify genomic information including genetic mutations from GWAS (genome-wide association study), differentially expressed genes, bidirectional promoters, intrinsic disordered proteins (IDP) and protein interactions to gain deep insights into the underlying mechanisms of gene regulations and networks. Furthermore, bidirectional promoters can co-regulate many biological pathways, where the roles of bidirectional promoters can be studied systematically for identifying co-regulating genes at interactive network level. Combining information from different but related studies can ultimately help revealing the landscape of molecular mechanisms underlying complex diseases such as cancer.Item Alcohol-preferring rats show decreased corticotropin-releasing hormone-2 receptor expression and differences in HPA activation compared to alcohol-nonpreferring rats(Wiley Blackwell (Blackwell Publishing), 2014-05) Yong, Weidong; Spence, John Paul; Eskay, Robert; Fitz, Stephanie D.; Damadzic, Ruslan; Lai, Dongbing; Foroud, Tatiana; Carr, Lucinda G.; Shekhar, Anantha; Chester, Julia A.; Heilig, Markus; Liang, Tiebing; Department of Medicine, IU School of MedicineBACKGROUND: Corticotropin-releasing hormone (CRH) and urocortins (UCNs) bind to corticotropin-releasing hormone type 2 receptor (CRF2 receptor ), a Gs protein-coupled receptor that plays an important role in modulation of anxiety and stress responses. The Crhr2 gene maps to a quantitative trait locus (QTL) for alcohol preference on chromosome 4 previously identified in inbred alcohol-preferring (iP) and-nonpreferring (iNP) F2 rats. METHODS: Real-time polymerase chain reaction was utilized to screen for differences in Crhr2 mRNA expression in the central nervous system (CNS) of male iP and iNP rats. DNA sequence analysis was then performed to screen for polymorphism in Crhr2 in order to identify genetic variation, and luciferase reporter assays were then applied to test their functional significance. Next, binding assays were used to determine whether this polymorphism affected CRF2 receptor binding affinity as well as CRF2 receptor density in the CNS. Finally, social interaction and corticosterone levels were measured in the P and NP rats before and after 30-minute restraint stress. RESULTS: Crhr2 mRNA expression studies found lower levels of Crhr2 mRNA in iP rats compared to iNP rats. In addition, DNA sequencing identified polymorphisms in the promoter region, coding region, and 3'-untranslated region between the iP and iNP rats. A 7 bp insertion in the Crhr2 promoter of iP rats altered expression in vitro as measured by reporter assays, and we found that CRF2 receptor density was lower in the amygdala of iP as compared to iNP rats. Male P rats displayed decreased social interaction and significantly higher corticosterone levels directly following 30-minute restraint when compared to male NP rats. CONCLUSIONS: This study identified Crhr2 as a candidate gene of interest underlying the chromosome 4 QTL for alcohol consumption that was previously identified in the P and NP model. Crhr2 promoter polymorphism is associated with reduced mRNA expression in certain brain regions, particularly the amygdala, and lowered the density of CRF2 receptor in the amygdala of iP compared to iNP rats. Together, these differences between the animals may contribute to the drinking disparity as well as the anxiety differences of the P and NP rats.Item Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells(Public Library of Science (PLoS), 2016) Custer, Sara K.; Gilson, Timra D.; Li, Hongxia; Todd, A. Gary; Astroski, Jacob W.; Lin, Hai; Liu, Yunlong; Androphy, Elliot J.; Department of Dermatology, School of MedicineSpinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particularly harmful and may serve as potential targets for the treatment of motor neuron disease or as biomarkers in the SMA patient population. We performed deep RNA sequencing using motor neuron-like NSC-34 cells to screen for SMN-dependent mRNA processing changes that occur following acute depletion of SMN. We identified SMN-dependent splicing changes, including an intron retention event that results in the production of a truncated Rit1 transcript. This intron-retained transcript is stable and is mis-spliced in spinal cord from symptomatic SMA mice. Constitutively active Rit1 ameliorated the neurite outgrowth defect in SMN depleted NSC-34 cells, while expression of the truncated protein product of the mis-spliced Rit1 transcript inhibited neurite extension. These results reveal new insights into the biological consequence of SMN-dependent splicing in motor neuron-like cells.Item Apolipoprotein B and PNPLA3 Double Heterozygosity in a Father–Son Pair With Advanced Nonalcoholic Fatty Liver Disease(Wiley, 2019) Jansson-Knodell, Claire L.; Gawrieh, Samer; McIntyre, Adam D.; Liang, Tiebing; Hegele, Robert A.; Chalasani, Naga; Medicine, School of MedicineItem Association of cerebrospinal fluid Aβ42 with A2M gene in cognitively normal subjects(Elsevier, 2014-02) Millard, Steven P.; Lutz, Franziska; Li, Ge; Galasko, Douglas R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby; Yu, Chang-En; Peskind, Elaine R.; Bekris, Lynn M.; Department of Neurology, IU School of MedicineLow cerebrospinal fluid (CSF) Aβ42 levels correlate with increased brain Aβ deposition in Alzheimer’s disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ42 levels than non-carriers. The hypothesis of this investigation was that CSF Aβ42 levels correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ42 levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5′ and 3′ regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ42 levels were associated with APOE ε4 status in controls but not in AD patientsItem The association of COMT genotype with buproprion treatment response in the treatment of major depressive disorder(Wiley, 2020-05-27) Fawver, Jay; Flanagan, Mindy; Smith, Thomas; Drouin, Michelle; Mirro, Michael; BioHealth Informatics, School of Informatics and ComputingBackground Pharmacodynamics and pharmacogenetics are being explored in pharmacological treatment response for major depressive disorder (MDD). Interactions between genotype and treatment response may be dose dependent. In this study, we examined whether MDD patients with Met/Met, Met/Val, and Val/Val COMT genotypes differed in their response to bupropion in terms of depression scores. Methods This study utilized a convenience sample of 241 adult outpatients (≥18 years) who met DSM‐5 criteria for MDD and had visits at a Midwest psychopharmacology clinic between February 2016 and January 2017. Exclusion criteria included various comorbid medical, neurological, and psychiatric conditions and current use of benzodiazepines or narcotics. Participants completed genetic testing and the 9 question patient‐rated Patient Health Questionnaire (PHQ‐9) at each clinic visit (M = 3.8 visits, SD = 1.5) and were prescribed bupropion or another antidepressant drug. All participants were adherent to pharmacotherapy treatment recommendations for >2 months following genetic testing. Results Participants were mostly Caucasian (85.9%) outpatients (154 female and 87 male) who were 44.5 years old, on average (SD = 17.9). For Val carriers, high bupropion doses resulted in significantly lower PHQ‐9 scores than no bupropion (t(868) = 5.04, p < .001) or low dose bupropion (t(868) = 3.29, p = .001). Val carriers differed significantly from Met/Met patients in response to high dose bupropion (t(868) = −2.03, p = .04), but not to low dose bupropion. Conclusion High‐dose bupropion is beneficial for MDD patients with Met/Val or Val/Val COMT genotypes, but not for patients with Met/Met genotype. Prospective studies are necessary to replicate this pharmacodynamic relationship between bupropion and COMT genotypes and explore economic and clinical outcomes.Item Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals(American Medical Association, 2015-11) Ghani, Mahdi; Reitz, Christiane; Cheng, Rong; Vardarajan, Badri Narayan; Jun, Gyungah; Sato, Christine; Naj, Adam; Rajbhandary, Ruchita; Wang, Li-San; Valladares, Otto; Lin, Chiao-Feng; Larson, Eric B.; Graff-Radford, Neill R.; Evans, Denis; De Jager, Philip L.; Crane, Paul K.; Buxbaum, Joseph D.; Murrell, Jill R.; Raj, Towfique; Ertekin-Taner, Nilufer; Logue, Mark; Baldwin, Clinton T.; Green, Robert C.; Barnes, Lisa L.; Cantwell, Laura B.; Fallin, M. Daniele; Go, Rodney C. P.; Griffith, Patrick A.; Obisesan, Thomas O.; Manly, Jennifer J.; Lunetta, Kathryn L.; Kamboh, M. Ilyas; Lopez, Oscar L.; Bennett, David A.; Hendrie, Hugh; Hall, Kathleen S.; Goate, Alison M.; Byrd, Goldie S.; Kukull, Walter A.; Foroud, Tatiana M.; Haines, Jonathan L.; Farrer, Lindsay A.; Pericak-Vance, Margaret A.; Lee, Joseph H.; Schellenberg, Gerard D.; St. George-Hyslop, Peter; Mayeux, Richard; Rogaeva, Ekaterina; Department of Psychiatry, IU School of MedicineIMPORTANCE: Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE: To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES: The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS: The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE: To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.