ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "genetic etiology"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Using Patterns of Genetic Association to Elucidate Shared Genetic Etiologies Across Psychiatric Disorders
    (Springer, 2017-07) Cho, Seung Bin; Aliev, Fazil; Clark, Shaunna L.; Adkins, Amy E.; Edenberg, Howard J.; Bucholz, Kathleen K.; Porjesz, Bernice; Dick, Danielle M.; Biochemistry and Molecular Biology, School of Medicine
    Twin studies indicate that latent genetic factors overlap across comorbid psychiatric disorders. In this study, we used a novel approach to elucidate shared genetic factors across psychiatric outcomes by clustering single nucleotide polymorphisms based on their genome-wide association patterns. We applied latent profile analysis (LPA) to p-values resulting from genome-wide association studies across three phenotypes: symptom counts of alcohol dependence (AD), antisocial personality disorder (ASP), and major depression (MD), using the European–American case-control genome-wide association study subsample of the collaborative study on the genetics of alcoholism (N = 1399). In the 3-class model, classes were characterized by overall low associations (85.6% of SNPs), relatively stronger association only with MD (6.8%), and stronger associations with AD and ASP but not with MD (7.6%), respectively. These results parallel the genetic factor structure identified in twin studies. The findings suggest that applying LPA to association results across multiple disorders may be a promising approach to identify the specific genetic etiologies underlying shared genetic variance.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University