- Browse by Subject
Browsing by Subject "fused deposition modeling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Correlation Between Process Parameters and Mechanical Properties in Parts Printed by the Fused Deposition Modeling Process(Springer, 2019) Attoye, Samuel; Malekipour, Ehsan; El-Mounayri, Hazim; Mechanical and Energy Engineering, School of Engineering and TechnologyFused deposition modeling (FDM) represents one of the most common techniques for rapid prototyping and industrial additive manufacturing (AM). Optimizing the process parameters which significantly impact the mechanical properties is critical to achieving the ultimate final part quality sought by industry today. This work investigates the effect of different process parameters including nozzle temperature, printing speed, and print orientation on Young’s modulus, yield strength, and ultimate strength of the final part for two types of filament, namely, Poly Lactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS). Design of Experiments (DOE) is used to determine optimized values of the process parameters for each type of filaments; also, a comparison is made between the mechanical properties of the parts fabricated with the two materials. The results show that Y-axis orientation presents the best mechanical properties in PLA while X-axis orientation is the best orientation to print parts with ABS.Item Investigation of Layer Based Thermal Behavior in Fused Deposition Modeling Process by Infrared Thermography(Elsevier, 2018) Malekipour, Ehsan; Attoye, Samuel; El-Mounayri, Hazim; Mechanical Engineering, School of Engineering and TechnologyThere are numerous research efforts that address the monitoring and control of additive manufacturing (AM) processes to improve part quality. Much less research exists on process monitoring and control of Fused Deposition Modeling (FDM). FDM is inherently a thermal process and thus, lends itself to being study by thermography. In this regard, there are various process parameters or process signatures such as built-bed temperature, temperature mapping of parts during deposition of layers, and the nozzle extrusion temperature that may monitor to optimize the quality of fabricated parts. In this work, we applied image based thermography layer by layer with the usage of an infrared camera to investigate the thermal behavior and thermal evolution of the FDM process for the standard samples printed by ABS filament. The combination of the layer based temperature profile plot and the temporal plot has been utilized to understand the temperature distribution and average temperature through the layers under fabrication. This information provides insights for potential modification of the scan strategy and optimization of process parameters in future research, based on the thermal evolution. Accordingly, this can reduce some frequent defects which have roots in thermal characteristics of the deposited layers and also, improve the surface quality and/or mechanical properties of the fabricated parts. In addition, this approach for monitoring the process will allow manufacturers to build, qualify, and certify parts with greater throughput and accelerate the proliferation of products into high-quality applications.