ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "fluorescence resonance energy transfer (FRET)"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    DIFFERENTIAL RHOA ACTIVITY IN CHONDROCYTES UNDER FLOW
    (Office of the Vice Chancellor for Research, 2012-04-13) Wan, Qiaoqiao; Yokota, Hiroki; Na, Sungsoo
    Mechanical force environment is a major factor that influences cellular homeostasis and remodeling. The prevailing wisdom in this field demon-strated that a threshold of mechanical forces or deformation was required to affect cell signaling. However, we hypothesized that RhoA activities can be either elevated or reduced by selecting different levels of shear stress inten-sities. To test this hypothesis, a fluorescence resonance energy transfer (FRET)-based approach was used. The result revealed that C28/I2 chondro-cytes exhibited an increase in RhoA activities in response to high shear stress (10 or 20 dyn/cm2), while they showed a decrease in their RhoA activ-ities to intermediate shear stress at 5 dyn/cm2. No changes were observed under low shear stress (2 dyn/ cm2). The observed two-level switch of RhoA activities was closely linked to the shear stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. Collectively, these results here suggest that intensities of shear stress are critical in differential activa-tion and inhibition of RhoA activities in chondrocytes.
  • Loading...
    Thumbnail Image
    Item
    Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells
    (Elsevier B.V., 2014-01-24) Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C.; Voytik-Harbin, Sherry L.; Na, Sungsoo; Department of Biomedical Engineering, School of Engineering and Technology
    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs.
  • Loading...
    Thumbnail Image
    Item
    STIFFNESS OF 3D COLLAGEN MATRICES REGULATES CDC42 ACTIVITY OF ENDOTHELIAL COLONY FORMING CELLS DURING EARLY VACUOLE
    (Office of the Vice Chancellor for Research, 2012-04-13) Kim, Seung Joon; Voytik-Harbin, Sherry; Yoder, Mervin; Na, Sungsoo
    Recent preclinical reports have provided evidence that endothelial colony forming cells (ECFCs), a subset of endothelial progenitor cells, significantly improve vessel formation, largely due to their robust vasculogenic potential. While it has been known that the Rho family GTPase Cdc42 is involved in this ECFC-driven vessel formation process, the effect of extracellular matrix (ECM) stiffness on its activity during vessel formation is largely unknown. Using a fluorescence resonance energy transfer (FRET)-based Cdc42 biosen-sor, we examined the spatio-temporal activity of Cdc42 of ECFCs in three-dimensional (3D) collagen matrices with varying stiffness. The result re-vealed that ECFCs exhibited an increase in Cdc42 activity in a soft (150 Pa) matrix, while they were much less responsive in a stiff (1000 Pa) matrix. In both soft and stiff matrices, Cdc42 was highly activated near vacuoles; how-ever, its activity is higher in a soft matrix than that in a stiff matrix. The ob-served Cdc42 activity was closely associated with vacuole area. Soft matri-ces induced higher Cdc42 activity, faster vacuole formation, and larger vac-uole area than stiff matrices. Time courses of Cdc42 activity and vacuole formation data revealed that Cdc42 activity proceeds vacuole formation. Collectively, these results suggest that matrix stiffness is critical in regulat-ing Cdc42 activity in ECFCs and its activation is an important step in early vacuole formation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University