- Browse by Subject
Browsing by Subject "federated learning"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Intelligent Device Selection in Federated Edge Learning with Energy Efficiency(2021-12) Peng, Cheng; Hu, Qin; Kang, Kyubyung; Zou, XukaiDue to the increasing demand from mobile devices for the real-time response of cloud computing services, federated edge learning (FEL) emerges as a new computing paradigm, which utilizes edge devices to achieve efficient machine learning while protecting their data privacy. Implementing efficient FEL suffers from the challenges of devices' limited computing and communication resources, as well as unevenly distributed datasets, which inspires several existing research focusing on device selection to optimize time consumption and data diversity. However, these studies fail to consider the energy consumption of edge devices given their limited power supply, which can seriously affect the cost-efficiency of FEL with unexpected device dropouts. To fill this gap, we propose a device selection model capturing both energy consumption and data diversity optimization, under the constraints of time consumption and training data amount. Then we solve the optimization problem by reformulating the original model and designing a novel algorithm, named E2DS, to reduce the time complexity greatly. By comparing with two classical FEL schemes, we validate the superiority of our proposed device selection mechanism for FEL with extensive experimental results. Furthermore, for each device in a real FEL environment, it is the fact that multiple tasks will occupy the CPU at the same time, so the frequency of the CPU used for training fluctuates all the time, which may lead to large errors in computing energy consumption. To solve this problem, we deploy reinforcement learning to learn the frequency so as to approach real value. And compared to increasing data diversity, we consider a more direct way to improve the convergence speed using loss values. Then we formulate the optimization problem that minimizes the energy consumption and maximizes the loss values to select the appropriate set of devices. After reformulating the problem, we design a new algorithm FCE2DS as the solution to have better performance on convergence speed and accuracy. Finally, we compare the performance of this proposed scheme with the previous scheme and the traditional scheme to verify the improvement of the proposed scheme in multiple aspects.Item Nothing Wasted: Full Contribution Enforcement in Federated Edge Learning(IEEE Xplore, 2021-10) Hu, Qin; Wang, Shengling; Xiong, Zehui; Cheng, Xiuzhen; Computer and Information Science, School of ScienceThe explosive amount of data generated at the network edge makes mobile edge computing an essential technology to support real-time applications, calling for powerful data processing and analysis provided by machine learning (ML) techniques. In particular, federated edge learning (FEL) becomes prominent in securing the privacy of data owners by keeping the data locally used to train ML models. Existing studies on FEL either utilize in-process optimization or remove unqualified participants in advance. In this paper, we enhance the collaboration from all edge devices in FEL to guarantee that the ML model is trained using all available local data to accelerate the learning process. To that aim, we propose a collective extortion (CE) strategy under the imperfect-information multi-player FEL game, which is proved to be effective in helping the server efficiently elicit the full contribution of all devices without worrying about suffering from any economic loss. Technically, our proposed CE strategy extends the classical extortion strategy in controlling the proportionate share of expected utilities for a single opponent to the swiftly homogeneous control over a group of players, which further presents an attractive trait of being impartial for all participants. Both theoretical analysis and experimental evaluations validate the effectiveness and fairness of our proposed scheme.Item Solving the Federated Edge Learning Participation Dilemma: A Truthful and Correlated Perspective(IEEE, 2022-07) Hu, Qin; Li, Feng; Zou, Xukai; Xiao, Yinhao; Computer and Information Science, School of ScienceAn emerging computational paradigm, named federated edge learning (FEL), enables intelligent computing at the network edge with the feature of preserving data privacy for edge devices. Given their constrained resources, it becomes a great challenge to achieve high execution performance for FEL. Most of the state-of-the-arts concentrate on enhancing FEL from the perspective of system operation procedures, taking few precautions during the composition step of the FEL system. Though a few recent studies recognize the importance of FEL formation and propose server-centric device selection schemes, the impact of data sizes is largely overlooked. In this paper, we take advantage of game theory to depict the decision dilemma among edge devices regarding whether to participate in FEL or not given their heterogeneous sizes of local datasets. For realizing both the individual and global optimization, the server is employed to solve the participation dilemma, which requires accurate information collection for devices’ local datasets. Hence, we utilize mechanism design to enable truthful information solicitation. With the help of correlated equilibrium , we derive a decision making strategy for devices from the global perspective, which can achieve the long-term stability and efficacy of FEL. For scalability consideration, we optimize the computational complexity of the basic solution to the polynomial level. Lastly, extensive experiments based on both real and synthetic data are conducted to evaluate our proposed mechanisms, with experimental results demonstrating the performance advantages.