- Browse by Subject
Browsing by Subject "fault diagnosis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Adaptive Nonlinear Model-Based Fault Diagnosis of Li-ion Batteries(IEEE, 2015-02) Sidhu, Amardeep Singh; Izadian, Afshin; Anwar, Sohel; Department of Mechanical Engineering, School of EngineeringIn this paper, an adaptive fault diagnosis technique is used in Li-ion batteries. The diagnosis process consists of multiple nonlinear models representing signature faults, such as overcharge and overdischarge, causing significant model parameter variation. The impedance spectroscopy of a Li-ion LiFePO4 cell is used, along with the equivalent circuit methodology, to construct nonlinear battery signature-fault models. Extended Kalman filters are utilized to estimate the terminal voltage of each model and to generate residual signals. The residual signals are used in the multiple-model adaptive estimation technique to generate probabilities that determine the signature faults. It can be seen that, by using this method, signature faults can be detected accurately, thus providing an effective way of diagnosing Li-ion battery failure.Item Electrochemical Model-Based Condition Monitoring via Experimentally Identified Li-Ion Battery Model and HPPC(MDPI, 2017-08-25) Rahman, Md Ashiqur; Anwar, Sohel; Izadian, Afshin; Mechanical Engineering, School of Engineering and TechnologyElectrochemical model-based condition monitoring of a Li-Ion battery using an experimentally identified battery model and Hybrid Pulse Power Characterization (HPPC) cycle is presented in this paper. LiCoO2 cathode chemistry was chosen in this work due to its higher energy storage capabilities. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, Navy over-discharged battery, 24 h over-discharged battery, and overcharged battery. Stated battery fault conditions can cause significant variations in a number of electrochemical battery model parameters from nominal values, and can be considered as separate models. Output error injection based partial differential algebraic equation (PDAE) observers have been used to generate the residual voltage signals in order to identify these abusive conditions. These residuals are then used in a Multiple Model Adaptive Estimation (MMAE) algorithm to detect the ongoing fault conditions of the battery. HPPC cycle simulated load profile based analysis shows that the proposed algorithm can detect and identify the stated fault conditions accurately using measured input current and terminal output voltage. The proposed model-based fault diagnosis can potentially improve the condition monitoring performance of a battery management system.Item Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC) Valves Used in Diesel Engines(MDPI, 2014-05-07) Tugsal, Umut; Anwar, Sohel; Mechanical Engineering, School of Engineering and TechnologyIn this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC) valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS) type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.