- Browse by Subject
Browsing by Subject "extubation failure"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Extubation Readiness Practices and Barriers to Extubation in Pediatric Subjects(AARC, 2021-04) Krasinkiewicz, Johnny M.; Friedman, Matthew L.; Slaven, James E.; Lutfi, Riad; Abu-Sultaneh, Samer; Tori, Alvaro J.; Pediatrics, School of MedicineBACKGROUND: Invasive mechanical ventilation is a lifesaving intervention that is associated with short- and long-term morbidities. Extubation readiness protocols aim to decrease extubation failure rates and simultaneously shorten the duration of invasive ventilation. This study sought to analyze extubation readiness practices at one institution and identify barriers to extubation in pediatric patients who have passed an extubation readiness test (ERT). METHODS: We performed a retrospective chart review of all pediatric subjects admitted between April 2017 and March 2018, and who were on mechanical ventilation. Exclusion criteria were cardiac ICU admission, tracheostomy, chronic ventilator support, limited resuscitation status, and death before extubation attempt. Data with regard to the method of ERT and reasons for delaying extubation were collected. RESULTS: There were 427 subjects included in the analysis with 69% having had an ERT before extubation. Of those, 39% were extubated per our daily spontaneous breathing trial (SBT) protocol, and the daily SBT failed in 30% but they had passed a subsequent pressure support and CPAP trial on the same day. The most common reasons for failing the daily SBT were a lack of spontaneous breathing (30% [75/252]), being intubated < 24 h (24% [60/252]), breathing frequency outside the target range (22% [55/252]), and not meeting tidal volume goal (14% [34/252]). The most common documented reasons for delaying extubation despite passing daily SBT were planned procedure (29% [26/90]), neurologic status (23% [21/90]), and no leak around the endotracheal tube (18% [16/90]). The median time between passing ERT and extubation was 7 h (interquartile range, 5–10). CONCLUSIONS: In our institution, there was variation in extubation readiness practices that could lead to a significant delay in liberation from invasive ventilation. Adjustment of our daily SBT to tolerate a higher work of breathing, such as higher breathing frequencies and lower tidal volumes, and incorporating sedation scoring into the protocol could be made without significantly affecting extubation failure rates.Item Operational Definitions related to Pediatric Ventilator Liberation(Elsevier, 2022-12-20) Abu-Sultaneh, Samer; Iyer, Narayan Prabhu; Fernández, Analía; Gaies, Michael; González-Dambrauskas, Sebastián; Hotz, Justin Christian; Kneyber, Martin C.J.; López-Fernández, Yolanda M.; Rotta, Alexandre T.; Werho, David K.; Baranwal, Arun Kumar; Blackwood, Bronagh; Craven, Hannah J.; Curley, Martha A.Q.; Essouri, Sandrine; Fioretto, Jose Roberto; Hartmann, Silvia M.M.; Jouvet, Philippe; Korang, Steven Kwasi; Rafferty, Gerrard F.; Ramnarayan, Padmanabhan; Rose, Louise; Tume, Lyvonne N.; Whipple, Elizabeth C.; Wong, Judith Ju Ming; Emeriaud, Guillaume; Mastropietro, Christopher W.; Napolitano, Natalie; Newth, Christopher J.L.; Khemani, Robinder G.BACKGROUND: Common, operational definitions are crucial to assess interventions and outcomes related to pediatric mechanical ventilation. These definitions can reduce unnecessary variability amongst research and quality improvement efforts, to ensure findings are generalizable and can be pooled to establish best practices. RESEARCH QUESTION: Can we establish operational definitions for key elements related to pediatric ventilator liberation using a combination of detailed literature review and consensus-based approaches? STUDY DESIGN AND METHODS: A panel of 26 international experts in pediatric ventilator liberation, two methodologists and two librarians conducted systematic reviews on eight topic areas related to pediatric ventilator liberation. Through a series of virtual meetings, we established draft definitions which were voted upon using an anonymous web-based process. Definitions were revised by incorporating extracted data gathered during the systematic review and discussed in another consensus meeting. A second round of voting was conducted to confirm the final definitions. RESULTS: In eight topic areas identified by the experts, 16 preliminary definitions were established. Based on initial discussion and the first round of voting, modifications were suggested for 11 of the 16 definitions. There was significant variability in how these items were defined in the literature reviewed. The final round of voting achieved ≥80% agreement for all 16 definitions in the following areas: what constitutes respiratory support (invasive mechanical ventilation and non-invasive respiratory support), liberation and failed attempts to liberate from invasive mechanical ventilation, liberation from respiratory support, duration of non-invasive respiratory support, total duration of invasive mechanical ventilation, spontaneous breathing trials, extubation readiness testing, 28-ventilator free days, and planned vs rescue use of post-extubation non-invasive respiratory support. INTERPRETATION: We propose these consensus-based definitions for elements of pediatric ventilator liberation, informed by evidence, be used for future quality improvement initiatives and research studies to improve generalizability, and facilitate comparison.Item Progression of Respiratory Support Following Pediatric Extubation(Wolters Kluwer, 2020-12) Krasinkiewicz, Johnny M.; Friedman, Matthew L.; Slaven, James E.; Tori, Alvaro J.; Lutfi, Riad; Abu-Sultaneh, Samer; Pediatrics, School of MedicineObjectives: High-flow nasal cannula and noninvasive positive pressure ventilation have become ubiquitous in contemporary PICUs. Practice patterns associated with the use of these modalities have not been well described. In this study, we aimed to describe the use of high-flow nasal cannula and noninvasive positive pressure ventilation in children after extubation and analyze the progression of usage in association with patient factors. Our secondary aim was to describe interventions used for postextubation stridor. Design: Single-center retrospective cohort study. Setting: A 36-bed quaternary medical-surgical PICU. Patients: Mechanically ventilated pediatric patients admitted between April 2017 and March 2018. Exclusions were patients in the cardiac ICU, patients requiring a tracheostomy or chronic ventilatory support, and patients with limited resuscitation status. Interventions: None. Measurements and Main Results: Data regarding respiratory modality use was collected for the first 72 hours after extubation. There were 427 patients included in the analysis; 51 patients (11.9%) were extubated to room air, 221 (51.8%) to nasal cannula, 132 (30.9%) to high-flow nasal cannula, and 23 (5.4%) to noninvasive positive pressure ventilation. By 72 hours, 314 patients (73.5%) were on room air, 52 (12.2%) on nasal cannula, 29 (6.8%) on high-flow nasal cannula, eight (1.9%) on noninvasive positive pressure ventilation, and 24 (5.6%) were reintubated. High-flow nasal cannula was the most used respiratory modality for postextubation stridor. Multivariate analysis demonstrated that longer duration of invasive mechanical ventilation increased the odds of initial high-flow nasal cannula and noninvasive positive pressure ventilation use, and a diagnosis of cerebral palsy increased the odds of escalating from high-flow nasal cannula to noninvasive positive pressure ventilation in the first 24 hours post extubation. Conclusions: High-flow nasal cannula is commonly used immediately after pediatric extubation and the development of postextubation stridor; however, its usage sharply declines over the following 72 hours. Larger multicenter trials are needed to identify high-risk patients for extubation failure that might benefit the most from prophylactic use of high-flow nasal cannula and noninvasive positive pressure ventilation after extubation.