ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "electroacupuncture"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effect of moxibustion on the expression of GDNF and its receptor GFRα3 in the colon and spinal cord of rats with irritable bowel syndrome
    (Sage, 2019-08) Qi, Qin; Wu, Huangan; Jin, Xiaoming; Jin, Duiyin; Wang, Yuanyuan; Wang, Cun; Liu, Yanan; Wang, Xiaomei; Anatomy and Cell Biology, School of Medicine
    Background: Moxibustion treatment has been found to ameliorate clinical symptoms including abdominal pain, diarrhoea and constipation in patients with irritable bowel syndrome (IBS). Herein we investigated the mechanisms underlying the use of moxibustion in a rat model of IBS. Methods: In our study, an IBS model was established in rats by colorectal distension (CRD) stimulus and mustard oil enema. The rats were randomly divided into a normal group, model group, mild moxibustion group, electroacupuncture group, probiotic group and dicetel group. Abdominal withdrawal reflex (AWR) scores were determined within 90 min of the last treatment. The expression of GDNF/GFRα3 protein and mRNA in the colon and spinal cord were detected by immunohistochemistry and quantitative real-time-PCR, respectively. Results: The IBS model rats had significantly higher AWR scores than the normal group (P<0.01). After mild moxibustion treatment, the AWR score was significantly reduced (20 mm Hg, P<0.05; 40 mm Hg, 60 mm Hg and 80 mm Hg, P<0.01). The model group showed significantly more colonic glial cell line-derived neurotrophic factor (GDNF/GFRα3 (GDNF family receptor α3) protein and mRNA expression in the colon and spinal cord than the normal group (P<0.01). Compared with the model group, the expression of GDNF/GFRα3 protein and mRNA in the colon and spinal cord of the rats were significantly decreased in the mild moxibustion group (colon: GDNF and GFRα3 protein, P<0.01; GDNF and GFRα3 mRNA, P<0.01; spinal cord: GDNF and GFRα3 protein, P<0.01; GDNF mRNA, P<0.05, GFRα3 mRNA, P<0.01). Conclusions: Our data suggest that moxibustion therapy may mitigate CRD-induced increases in the expression of GDNF and its receptor GFRα3 in the colon and spinal cord in a rat model of IBS.
  • Loading...
    Thumbnail Image
    Item
    Effects of low- and high-frequency electroacupuncture on protein expression and distribution of TRPV1 and P2X3 in rats with peripheral nerve injury
    (Sage, 2021-10) Du, Junying; Fang, Junfan; Xiang, Xuaner; Yu, Jie; Le, Xiaoqin; Liang, Yi; Jin, Xiaoming; Fang, Jiaoqiao; Anatomy and Cell Biology, School of Medicine
    Background: Whether electroacupuncture (EA) stimulation at different frequencies has a similar effect on spared nerve injury (SNI) as other neuropathic pain models, and how EA at different frequencies causes distinct analgesic effects on neuropathic pain is still not clear. Methods: Adult male Sprague-Dawley rats were randomly divided into sham SNI, SNI, 2 Hz, 100 Hz and sham EA groups. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured. EA was performed once a day on days 1 to 14 after SNI. The expressions of transient receptor potential cation subfamily V member 1 (TRPV1) and peripheral purinergic P2X receptor 3 (P2X3) were determined by western blotting and immunofluorescence. TRPV1 siRNA and P2X3 siRNA were administered by intrathecal injection. TRPV1 or P2X3 agonists were combined with EA. Results: There were significant decreases in PWT, but no changes in PWL in the 14 days after SNI. EA using 2- or 100-Hz stimulation similarly increased PWT at every time point. The cytosol protein expression of P2X3 in the L4–L6 dorsal root ganglia (DRG) increased, but the expression of TRPV1 decreased in the SNI model. Both these effects were ameliorated by EA, with 2-Hz stimulation having a stronger effect than 100-Hz stimulation. Blocking either TRPV1 or P2X3 specific siRNAs attenuated the decreased PWT induced by SNI. Administration of either a TRPV1 or P2X3 agonist inhibited EA analgesia. Conclusion: 2- and 100-Hz EA similarly induced analgesic effects in SNI. This effect was related to up-regulation and down-regulation, respectively, of cytosol protein expression of P2X3 and TRPV1 in L4–L6 DRG, with 2 Hz having a better effect than 100 Hz.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University