- Browse by Subject
Browsing by Subject "efavirenz"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Cholesterol-Metabolizing Enzyme Cytochrome P450 46A1 as a Pharmacologic Target for Alzheimer’s Disease(Elsevier, 2017-09) Mast, Natalia; Saadane, Aicha; Valencia-Olvera, Ana; Constans, James; Maxfield, Erin; Arajawa, Hiroyuki; Li, Young; Landreth, Gary; Pikuleva, Irina A.; Department of Anatomy & Cell Biology, IU School of MedicineCytochrome P450 46A1 (CYP46A1 or cholesterol 24-hydroxylase) controls cholesterol elimination from the brain and plays a role in higher order brain functions. Genetically enhanced CYP46A1 expression in mouse models of Alzheimer's disease mitigates the manifestations of this disease. We enhanced CYP46A1 activity pharmacologically by treating 5XFAD mice, a model of rapid amyloidogenesis, with a low dose of the anti-HIV medication efavirenz. Efavirenz was administered from 1 to 9 months of age, and mice were evaluated at specific time points. At one month of age, cholesterol homeostasis was already disturbed in the brain of 5XFAD mice. Nevertheless, efavirenz activated CYP46A1 and mouse cerebral cholesterol turnover during the first four months of administration. This treatment time also reduced amyloid burden and microglia activation in the cortex and subiculum of 5XFAD mice as well as protein levels of amyloid precursor protein and the expression of several genes involved in inflammatory response. However, mouse short-term memory and long-term spatial memory were impaired, whereas learning in the context-dependent fear test was improved. Additional four months of drug administration (a total of eight months of treatment) improved long-term spatial memory in the treated as compared to the untreated mice, further decreased amyloid-β content in 5XFAD brain, and also decreased the mortality rate among male mice. We propose a mechanistic model unifying the observed efavirenz effects. We suggest that CYP46A1 activation by efavirenz could be a new anti-Alzheimer's disease treatment and a tool to study and identify normal and pathological brain processes affected by cholesterol maintenance.Item Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy(Wiley, 2019-04-21) Desta, Zeruesenay; Gammal, Roseann S.; Gong, Li; Whirl-Carrillo, Michelle; Gaur, Aditya H.; Sukasem, Chonlaphat; Hockings, Jennifer; Myers, Alan; Swart, Marelize; Tyndale, Rachel F.; Masimirembwa, Collen; Iwuchukwu, Otito F.; Chirwa, Sanika; Lennox, Jeffrey; Gaedigk, Andrea; Klein, Teri E.; Haas, David W.; Medicine, School of MedicineThe human immunodeficiency virus (HIV) type-1 non-nucleoside reverse transcriptase inhibitor, efavirenz, is widely used to treat HIV-1 infection. Efavirenz is predominantly metabolized into inactive metabolites by CYP2B6, and patients with certain CYP2B6 genetic variants may be at increased risk for adverse effects, particularly central nervous system toxicity and treatment discontinuation. We summarize the evidence from the literature and provide therapeutic recommendations for efavirenz prescribing based on CYP2B6 genotypes.Item CYP2B6 Genotype‐Dependent Inhibition of CYP1A2 and Induction of CYP2A6 by the Antiretroviral Drug Efavirenz in Healthy Volunteers(ASCPT, 2019) Metzger, Ingrid F.; Dave, Nimita; Kreutz, Yvonne; Lu, Jessica B. L.; Galinsky, Raymond E.; Desta, Zeruesenay; Pharmacology and Toxicology, School of MedicineWe investigated the effect of efavirenz on the activities of cytochrome P450 (CYP)1A2, CYP2A6, xanthine oxidase (XO), and N‐acetyltransferase 2 (NAT2), using caffeine as a probe. A single 150 mg oral dose of caffeine was administered to healthy volunteers (n = 58) on two separate occasions; with a single 600 mg oral dose of efavirenz and after treatment with 600 mg/day efavirenz for 17 days. Caffeine and its metabolites in plasma and urine were quantified using liquid chromatography/tandem‐mass spectrometry. DNA was genotyped for CYP2B6*4 (785A>G), CYP2B6*9 (516G>T), and CYP2B6*18 (983T>C) alleles using TaqMan assays. Relative to single‐dose efavirenz treatment, multiple doses of efavirenz decreased CYP1A2 (by 38%) and increased CYP2A6 (by 85%) activities (P < 0.05); XO and NAT2 activities were unaffected. CYP2B6*6*6 genotype was associated with lower CYP1A2 activity following both single and multiple doses of efavirenz. No similar association was noted for CYP2A6 activity. This is the first report showing that efavirenz reduces hepatic CYP1A2 and suggesting chronic efavirenz exposure likely enhances the elimination of CYP2A6 substrates. This is also the first to report the extent of efavirenz–CYP1A2 interaction may be efavirenz exposure‐dependent and CYP2B6 genotype‐dependent.Item Efavirenz inhibits the human ether-a-go-go related current (hERG) and induces QT interval prolongation in CYP2B6*6*6 allele carriers(Wiley, 2016-10) Abdelhady, Ahmed M.; Shugg, Tyler; Thong, Nancy; Li Lu, Jessica Bo; Kreutz, Yvonne; Jaynes, Heather A.; Robarge, Jason D.; Tisdale, James E.; Desta, Zeruesenay; Overholser, Brian R.; Pharmacology and Toxicology, School of MedicineBackground Efavirenz (EFV) has been associated with torsade de pointes despite marginal QT interval lengthening. Since EFV is metabolized by the cytochrome P450 (CYP) 2B6 enzyme, we hypothesized that EFV would lengthen the rate-corrected QT (QTcF) interval in carriers of the CYP2B6*6 decreased functional allele. Objective The primary objective of this study was to evaluate EFV-associated QT interval changes with regard to CYP2B6 genotype and to explore mechanisms of QT interval lengthening. Methods EFV was administered to healthy volunteers (n=57) as a single 600 mg dose followed by multiple doses to steady-state. Subjects were genotyped for known CYP2B6 alleles and ECGs and EFV plasma concentrations were obtained serially. Whole-cell, voltage-clamp experiments were performed on cells stably expressing hERG and exposed to EFV in the presence and absence of CYP2B6 expression. Results EFV demonstrated a gene-dose effect and exceeded the FDA criteria for QTcF interval prolongation in CYP2B6*6/*6 carriers. The largest mean time-matched differences ΔΔQTcF were observed at 6 hrs (14 ms; 95% CI [1; 27]), 12 hrs (18 ms; 95% CI [−4; 40] and 18 hrs (6 ms; 95% CI [−1; 14]) in the CYP2B6*6/*6 genotype. EFV concentrations exceeding 0.4 µg/mL significantly inhibited outward hERG tail currents (P<0.05). Conclusions This study demonstrates that homozygous carriers of CYP2B6*6 allele may be at increased risk for EFV-induced QTcF interval prolongation via inhibition of hERG.Item Influence of Uridine Diphosphate Glucuronosyltransferase Family 1 Member A1 and Solute Carrier Organic Anion Transporter Family 1 Member B1 Polymorphisms and Efavirenz on Bilirubin Disposition in Healthy Volunteers(ASPET, 2020-03) Collins, Kimberly S.; Metzger, Ingrid F.; Gufford, Brandon T.; Lu, Jessica B.; Medeiros, Elizabeth B.; Pratt, Victoria M.; Skaar, Todd C.; Desta, Zeruesenay; Medicine, School of MedicineChronic administration of efavirenz is associated with decreased serum bilirubin levels, probably through induction of UGT1A1. We assessed the impact of efavirenz monotherapy and UGT1A1 phenotypes on total, conjugated, and unconjugated serum bilirubin levels in healthy volunteers. Healthy volunteers were enrolled into a clinical study designed to address efavirenz pharmacokinetics, drug interactions, and pharmacogenetics. Volunteers received multiple oral doses (600 mg/day for 17 days) of efavirenz. Serum bilirubin levels were obtained at study entry and 1 week after completion of the study. DNA genotyping was performed for UGT1A1 [*80 (C>T), *6 (G>A), *28 (TA7), *36 (TA5), and *37 (TA8)] and for SLCO1B1 [*5 (521T>C) and *1b (388A>G] variants. Diplotype predicted phenotypes were classified as normal, intermediate, and slow metabolizers. Compared with bilirubin levels at screening, treatment with efavirenz significantly reduced total, conjugated, and unconjugated bilirubin. After stratification by UGT1A1 phenotypes, there was a significant decrease in total bilirubin among all phenotypes, conjugated bilirubin among intermediate metabolizers, and unconjugated bilirubin among normal and intermediate metabolizers. The data also show that UGT1A1 genotype predicts serum bilirubin levels at baseline, but this relationship is lost after efavirenz treatment. SLCO1B1 genotypes did not predict bilirubin levels at baseline or after efavirenz treatment. Our data suggest that efavirenz may alter bilirubin disposition mainly through induction of UGT1A1 metabolism and efflux through multidrug resistance–associated protein 2.Item Variants in the CYP2B6 3′UTR Alter In Vitro and In Vivo CYP2B6 Activity: Potential Role of MicroRNAs(Wiley, 2017) Burgess, Kimberly S.; Ipe, Joseph; Swart, Marelize; Metzger, Ingrid F.; Lu, Jessica; Gufford, Brandon T.; Thong, Nancy; Desta, Zeruesenay; Gaedigk, Roger; Pearce, Robin; Gaedigk, Andrea; Liu, Yunlong; Skaar, Todd C.; Medicine, School of MedicineCYP2B6*6 and CYP2B6*18 are the most clinically important variants causing reduced CYP2B6 protein expression and activity. However, these variants do not account for all variability in CYP2B6 activity. Emerging evidence has shown that genetic variants in the 3′UTR may explain variable drug response by altering microRNA regulation. Five 3′UTR variants were associated with significantly altered efavirenz AUC0-48 (8-OH-EFV/EFV) ratios in healthy human volunteers. The rs70950385 (AG>CA) variant, predicted to create a microRNA binding site for miR-1275, was associated with a 33% decreased CYP2B6 activity among normal metabolizers (AG/AG vs. CA/CA (P < 0.05)). In vitro luciferase assays were used to confirm that the CA on the variant allele created a microRNA binding site causing an 11.3% decrease in activity compared to the AG allele when treated with miR-1275 (P = 0.0035). Our results show that a 3′UTR variant contributes to variability in CYP2B6 activity.