- Browse by Subject
Browsing by Subject "edible"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessment of Acute Motor Effects and Tolerance Following Self‐Administration of Alcohol and Edible ∆9‐Tetrahydrocannabinol in Adolescent Male Mice(Wiley, 2019-11) Smoker, Michael P.; Hernandez, Maribel; Zhang, Yanping; Boehm, Stephen L., II; Psychology, School of ScienceBackground Cannabinoids and their principle psychoactive target, the cannabinoid type 1 receptor (CB1R), impact a number of alcohol‐related properties, and although alcohol and cannabis are often co‐used, particularly in adolescence, few animal models of this phenomenon exist. We modeled the co‐use of alcohol and ∆9‐tetrahydrocannabinol (THC) in adolescent mice using ingestive methods popular during this developmental period in humans, namely binge‐drinking and edible THC. With this model, we assessed levels of use, acute effects, and tolerance to each substance. Methods Adolescent male C57BL/6J mice had daily, limited access to 1 of 2 edible doughs (THC or control), to 1 of 2 fluids (ethanol (EtOH) or water), and in 1 of 2 orders (dough–fluid or fluid–dough). Home cage locomotor activity was recorded both during access and after access. On the day following the final access session, a subset of mice were assessed for functional and metabolic tolerance to alcohol using accelerating rotarod and blood EtOH concentrations, respectively. The remaining mice were assessed for tolerance to THC‐induced hypothermia, and whole‐brain CB1R expression was assessed in all mice. Results EtOH intake was on par with levels previously reported in adolescent mice. Edible THC was well‐consumed, but consumption decreased at the highest dose provided. Locomotor activity increased following EtOH intake and decreased following edible THC consumption, and edible THC increased fluid intake in general. The use of alcohol produced neither functional nor metabolic tolerance to an alcohol challenge. However, the use of edible THC impaired subsequent drug‐free rotarod performance and was associated with a reduction in THC's hypothermic effect. Conclusions Adolescent mice self‐administered both alcohol and edible THC to a degree sufficient to acutely impact locomotor activity. However, only edible THC consumption had lasting effects during short‐term abstinence. Thus, this adolescent co‐use model could be used to explore sex differences in self‐administration and the impact substance co‐use might have on other domains such as mood and cognition.Item Self-administration of edible Δ9-tetrahydrocannabinol and associated behavioral effects in mice(Elsevier, 2019) Smoker, Michael P.; Mackie, Ken; Lapish, Christopher C.; Boehm, Stephen L., II; Psychology, School of ScienceBackground With increasing access to legal cannabis across the globe, it is imperative to more closely study its behavioral and physiological effects. Furthermore, with the proliferation of cannabis use, modes of consumption are changing, with edible formulations becoming increasingly popular. Nevertheless, there are relatively few animal models of self-administration of the primary psychoactive component of cannabis, Δ9-tetrahydrocannabinol (THC), and almost all incorporate routes of administration other than those used by humans. The aim of the current study was to develop a model of edible THC self-administration and assess its impact on CB1 receptor-mediated behaviors in female and male mice. Methods Mice were given limited access to a palatable dough which occasionally contained THC in doses ranging from 1 to 10 mg/kg. Following dough consumption, mice were assessed for home cage locomotor activity, body temperature, or analgesia. Locomotor activity was also assessed in conjunction with the CB1 receptor antagonist SR141716A. Results Dough was well-consumed, but consumption decreased at the highest THC concentrations. Edible THC produced dose-dependent decreases in locomotor activity and body temperature in both sexes, and these effects were more pronounced in male mice. Hypolocomotion induced by edible THC was attenuated by SR141716A, indicating mediation by CB1 receptor activation. Conclusions In contrast to other cannabinoid self-administration models, edible THC is relatively low in stress and uses a route of administration analogous to one used by humans. Potential applications include chronic THC self-administration, determining THC reward/reinforcement, and investigating consequences of oral THC use.