ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "eIF2 phosphorylation"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Activation of Gcn2 by small molecules designed to be inhibitors
    (Elsevier, 2023) Carlson, Kenneth R.; Georgiadis, Millie M.; Tameire, Feven; Staschke, Kirk A.; Wek, Ronald C.; Biochemistry and Molecular Biology, School of Medicine
    The integrated stress response (ISR) is an important mechanism by which cells confer protection against environmental stresses. Central to the ISR is a collection of related protein kinases that monitor stress conditions, such as Gcn2 (EIF2AK4) that recognizes nutrient limitations, inducing phosphorylation of eukaryotic translation initiation factor 2 (eIF2). Gcn2 phosphorylation of eIF2 lowers bulk protein synthesis, conserving energy and nutrients, coincident with preferential translation of stress-adaptive gene transcripts, such as that encoding the Atf4 transcriptional regulator. While Gcn2 is central for cell protection to nutrient stress and its depletion in humans leads to pulmonary disorders, Gcn2 can also contribute to the progression of cancers and facilitate neurological disorders during chronic stress. Consequently, specific ATP-competitive inhibitors of Gcn2 protein kinase have been developed. In this study, we report that one such Gcn2 inhibitor, Gcn2iB, can activate Gcn2, and we probe the mechanism by which this activation occurs. Low concentrations of Gcn2iB increase Gcn2 phosphorylation of eIF2 and enhance Atf4 expression and activity. Of importance, Gcn2iB can activate Gcn2 mutants devoid of functional regulatory domains or with certain kinase domain substitutions derived from Gcn2-deficient human patients. Other ATP-competitive inhibitors can also activate Gcn2, although there are differences in their mechanisms of activation. These results provide a cautionary note about the pharmacodynamics of eIF2 kinase inhibitors in therapeutic applications. Compounds designed to be kinase inhibitors that instead directly activate Gcn2, even loss of function variants, may provide tools to alleviate deficiencies in Gcn2 and other regulators of the ISR.
  • Loading...
    Thumbnail Image
    Item
    Novel targets of eiF2 kinases determine cell fate during the integrated stress response
    (2014-12) Baird, Thomas; Wek, Ronald C.; Turchi, John J.; Anderson, Ryan; Liu, Yunlong; Quilliam, Lawrence
    Eukaryotic cells rapidly modulate protein synthesis in response to environmental cues through the reversible phosphorylation of eukaryotic initiation factor 2 (eIF2α~P) by a family of eIF2α kinases. The eIF2 delivers initiator Met-tRNAiMet to the translational apparatus, and eIF2α~P transforms its function from a translation initiation factor into a competitive inhibitor of the guanine nucleotide exchange factor (GEF) eIF2B, which is responsible for the recycling of eIF2-GDP to the translationally-competent eIF2-GTP state. Reduced eIF2-GTP levels lower general protein synthesis, which allows for the conservation of energy and nutrients, and a restructuring of gene expression. Coincident with global translational control, eIF2α~P directs the preferential translation of mRNA encoding ATF4, a transcriptional activator of genes important for stress remediation. The term Integrated Stress Response (ISR) describes this pathway in which multiple stresses converge to phosphorylate eIF2α and enhance synthesis of ATF4 and its downstream effectors. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2α~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKα as being subject to both translational and transcriptional induction during eIF2α~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKα mRNA involves the stress-induced relief of two inhibitory uORFs in the 5’-leader of the transcript. Also identified as being subject to preferential translation is mRNA encoding the bifunctional aminoacyl tRNA synthetase EPRS. During eIF2α~P, translational regulation of EPRS is suggested to occur through the bypass of a non-canonical upstream ORF encoded by a CUG start codon, highlighting the diversity by which upstream translation initiation events can regulate expression of a downstream coding sequence. This body of work provides for a better understanding of how translational control during stress is modulated genome-wide and for the processes by which this mode of gene regulation in the ISR contributes to cell fate.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University