- Browse by Subject
Browsing by Subject "eIF2"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Activation of the integrated stress response (ISR) pathways in response to Ref-1 inhibition in human pancreatic cancer and its tumor microenvironment(Frontiers Media, 2023-04-27) Mijit, Mahmut; Boner, Megan; Cordova, Ricardo A.; Gampala, Silpa; Kpenu, Eyram; Klunk, Angela J.; Zhang, Chi; Kelley, Mark R.; Staschke, Kirk A.; Fishel, Melissa L.; Pediatrics, School of MedicinePancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is characterized by a profound inflammatory tumor microenvironment (TME) with high heterogeneity, metastatic propensity, and extreme hypoxia. The integrated stress response (ISR) pathway features a family of protein kinases that phosphorylate eukaryotic initiation factor 2 (eIF2) and regulate translation in response to diverse stress conditions, including hypoxia. We previously demonstrated that eIF2 signaling pathways were profoundly affected in response to Redox factor-1 (Ref-1) knockdown in human PDAC cells. Ref-1 is a dual function enzyme with activities of DNA repair and redox signaling, responds to cellular stress, and regulates survival pathways. The redox function of Ref-1 directly regulates multiple transcription factors including HIF-1α, STAT3, and NF-κB, which are highly active in the PDAC TME. However, the mechanistic details of the crosstalk between Ref-1 redox signaling and activation of ISR pathways are unclear. Following Ref-1 knockdown, induction of ISR was observed under normoxic conditions, while hypoxic conditions were sufficient to activate ISR irrespective of Ref-1 levels. Inhibition of Ref-1 redox activity increased expression of p-eIF2 and ATF4 transcriptional activity in a concentration-dependent manner in multiple human PDAC cell lines, and the effect on eIF2 phosphorylation was PERK-dependent. Treatment with PERK inhibitor, AMG-44 at high concentrations resulted in activation of the alternative ISR kinase, GCN2 and induced levels of p-eIF2 and ATF4 in both tumor cells and cancer-associated fibroblasts (CAFs). Combination treatment with inhibitors of Ref-1 and PERK enhanced cell killing effects in both human pancreatic cancer lines and CAFs in 3D co-culture, but only at high doses of PERK inhibitors. This effect was completely abrogated when Ref-1 inhibitors were used in combination with GCN2 inhibitor, GCN2iB. We demonstrate that targeting of Ref-1 redox signaling activates the ISR in multiple PDAC lines and that this activation of ISR is critical for inhibition of the growth of co-culture spheroids. Combination effects were only observed in physiologically relevant 3D co-cultures, suggesting that the model system utilized can greatly affect the outcome of these targeted agents. Inhibition of Ref-1 signaling induces cell death through ISR signaling pathways, and combination of Ref-1 redox signaling blockade with ISR activation could be a novel therapeutic strategy for PDAC treatment.Item GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis(eLife Sciences, 2022-09-15) Cordova, Ricardo A.; Misra, Jagannath; Amin, Parth H.; Klunk, Anglea J.; Damayanti, Nur P.; Carlson, Kenneth R.; Elmendorf, Andrew J.; Kim, Hyeong-Geug; Mirek, Emily T.; Elzey, Bennet D.; Miller, Marcus J.; Dong, X. Charlie; Cheng, Liang; Anthony, Tracy G.; Pili, Roberto; Wek, Ronald C.; Staschke, Kirk A.; Biochemistry and Molecular Biology, School of MedicineA stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.Item Human keratinocytes utilize the integrated stress response to adapt to environmental stress(2017-06) Collier, Ann E.; Spandau, Dan F.; Wek, Ronald C.; Travers, Jeffrey B.; Turchi, John J.; Turner, Matthew J.Human skin, consisting of the outer epidermis and inner dermis, serves as a barrier that protects the body from an onslaught of environmental stresses. Keratinocytes in the stratified epidermis undergo sequential differentiation that consists of multiple layers of cells differing in structure and function. Therefore, keratinocytes must not only combat environmental stress, but need to undergo massive changes in gene expression and morphology to form a proper barrier. One mode by which cells cope with stress and differentiation is through phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α-P), which causes global inhibition of protein synthesis coincident with preferential translation of select gene transcripts. Translational repression allows stressed cells to conserve energy and prioritize pro-survival processes to alleviate stress damage. Since eIF2α kinases are each activated by distinct types of stress, this pathway is referred to as the Integrated Stress Response (ISR). We sought to identify the roles of the ISR in the keratinocyte response to the stresses associated with differentiation and ultraviolet B (UVB) irradiation. In this thesis, we show that both general and gene-specific translational control in the ISR are activated following differentiation or UVB irradiation of human keratinocytes. ISR deficiency through genetic modifications or pharmacological interventions caused severe divergence from the appropriate keratinocyte response to differentiation or UVB. Differentiation genes were selectively translated by eIF2α-P, and inhibition of the ISR diminished their induction during differentiation. Furthermore, loss of the eIF2α kinase GCN2 (EIF2AK4) adversely affected the ability of keratinocytes to stratify in three dimensional cultures. Our analysis also revealed a non-canonical ISR response following UVB irradiation, in which downstream factors ATF4 (CREB2) and CHOP (DDIT3/GADD153) were poorly expressed due to repressed transcription, despite preferential translation in response to eIF2α-P. The ISR was cytoprotective during UVB and we found that eIF2α-P was required for a UVB induced G1 arrest, cell fate determination, and DNA repair via a mechanism involving translational control of human CDKN1A (p21 protein) transcript variant 4 mRNA. Collectively, this thesis describes novel roles for the ISR in keratinocyte differentiation and response to UVB, emphasizing the utility of targeting translational control in skin disease therapy.Item Integration of general amino acid control and TOR regulatory pathways in yeast(2010-05) Staschke, Kirk Alan; Wek, Ronald C.; Edenberg, Howard J.; Roach, Peter J.; Bard, MartinTwo important nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC through Gcn2p phosphorylation of the translation initiation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that the GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. While Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p activates genes required for assimilation of secondary nitrogen sources, such as -amino-butyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.Item Phosphorylation of eukaryotic initiation factor-2α promotes the extracellular survival of obligate intracellular parasite Toxoplasma gondii(National Academy of Science, 2010) Joyce, Bradley R.; Queener, Sherry F.; Wek, Ronald C.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineWhile seeking a new host cell, obligate intracellular parasites, such as the protozoan Toxoplasma gondii, must be able to endure the stress of an extracellular environment. The mechanisms Toxoplasma use to remain viable while deprived of a host cell are not understood. We have previously shown that phosphorylation of Toxoplasma eukaryotic initiation factor-2α (TgIF2α) is a conserved response to stress. Here we report the characterization of Toxoplasma harboring a point mutation (S71A) in TgIF2α that prevents phosphorylation. Results show that TgIF2α phosphorylation is critical for parasite viability because the TgIF2α-S71A mutants are ill-equipped to cope with life outside the host cell. The TgIF2α-S71A mutants also showed a significant delay in producing acute toxoplasmosis in vivo. We conclude that the phosphorylation of TgIF2α plays a crucial role during the lytic cycle by ameliorating the stress of the extracellular environment while the parasite searches for a new host cell.Item Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response(Mary Ann Liebert, 2023) Wek, Ronald C.; Anthony, Tracy G.; Staschke, Kirk A.; Biochemistry and Molecular Biology, School of MedicineSignificance: Organisms adapt to changing environments by engaging cellular stress response pathways that serve to restore proteostasis and enhance survival. A primary adaptive mechanism is the integrated stress response (ISR), which features phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2). Four eIF2α kinases respond to different stresses, enabling cells to rapidly control translation to optimize management of resources and reprogram gene expression for stress adaptation. Phosphorylation of eIF2 blocks its guanine nucleotide exchange factor, eIF2B, thus lowering the levels of eIF2 bound to GTP that is required to deliver initiator transfer RNA (tRNA) to ribosomes. While bulk messenger RNA (mRNA) translation can be sharply lowered by heightened phosphorylation of eIF2α, there are other gene transcripts whose translation is unchanged or preferentially translated. Among the preferentially translated genes is ATF4, which directs transcription of adaptive genes in the ISR. Recent Advances and Critical Issues: This review focuses on how eIF2α kinases function as first responders of stress, the mechanisms by which eIF2α phosphorylation and other stress signals regulate the exchange activity of eIF2B, and the processes by which the ISR triggers differential mRNA translation. To illustrate the synergy between stress pathways, we describe the mechanisms and functional significance of communication between the ISR and another key regulator of translation, mammalian/mechanistic target of rapamycin complex 1 (mTORC1), during acute and chronic amino acid insufficiency. Finally, we discuss the pathological conditions that stem from aberrant regulation of the ISR, as well as therapeutic strategies targeting the ISR to alleviate disease. Future Directions: Important topics for future ISR research are strategies for modulating this stress pathway in disease conditions and drug development, molecular processes for differential translation and the coordinate regulation of GCN2 and other stress pathways during physiological and pathological conditions.Item Translational Control in the Latency of Apicomplexan Parasites(Elsevier, 2017-12) Holmes, Michael J.; Augusto, Leonardo da Silva; Zhang, Min; Wek, Ronald C.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineApicomplexan parasites Toxoplasma gondii and Plasmodium spp. use latent stages to persist in the host, facilitate transmission, and thwart treatment of infected patients. Therefore, it is important to understand the processes driving parasite differentiation to and from quiescent stages. Here, we discuss how a family of protein kinases that phosphorylate the eukaryotic initiation factor-2 (eIF2) function in translational control and drive differentiation. This translational control culminates in reprogramming of the transcriptome to facilitate parasite transition towards latency. We also discuss how eIF2 phosphorylation contributes to the maintenance of latency and provides a crucial role in the timing of reactivation of latent parasites towards proliferative stages.