- Browse by Subject
Browsing by Subject "e-voting"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Efficient Secure E-Voting and its Application in Cybersecurity Education(2022-05) Swearingen, Nathan; Zou, Xukai; Li, Feng; Hu, QinAs the need for large elections increases and computer networking becomes more widely used, e-voting has become a major topic of interest in the field of cryptography. However, lack of cryptography knowledge among the general public is one obstacle to widespread deployment. In this paper, we present an e-voting scheme based on an existing scheme. Our scheme features an efficient location anonymization technique built on homomorphic encryption. This technique does not require any participation from the voter other than receiving and summing location shares. Moreover, our scheme is simplified and offers more protection against misbehaving parties. We also give an in-depth security analysis, present performance results, compare our scheme with existing schemes, and describe how our research can be used to enhance cybersecurity education.Item Enhancing and Implementing Fully Transparent Internet Voting(IEEE, 2015-08) Butterfield, Kevin; Li, Huian; Zou, Xukai; Li, Feng; Department of Computer & Information Science, School of ScienceVoting over the internet has been the focus of significant research with the potential to solve many problems. Current implementations typically suffer from a lack of transparency, where the connection between vote casting and result tallying is seen as a black box by voters. A new protocol was recently proposed that allows full transparency, never obfuscating any step of the process, and splits authority between mutually-constraining conflicting parties. Achieving such transparency brings with it challenging issues. In this paper we propose an efficient algorithm for generating unique, anonymous identifiers (voting locations) that is based on the Chinese Remainder Theorem, we extend the functionality of an election to allow for races with multiple winners, and we introduce a prototype of this voting system implemented as a multiplatform web application.Item Koinonia: verifiable e-voting with long-term privacy(ACM, 2019) Ge, Huangyi; Chau, Sze Yiu; Gonsalves, Victor E.; Liu, Huian; Wang, Tianhao; Zou, Xukai; Li, Ninghui; Computer and Information Science, School of ScienceDespite years of research, many existing e-voting systems do not adequately protect voting privacy. In most cases, such systems only achieve "immediate privacy", that is, they only protect voting privacy against today's adversaries, but not against a future adversary, who may possess better attack technologies like new cryptanalysis algorithms and/or quantum computers. Previous attempts at providing long-term voting privacy (dubbed "everlasting privacy" in the literature) often require additional trusts in parties that do not need to be trusted for immediate privacy. In this paper, we present a framework of adversary models regarding e-voting systems, and analyze possible threats to voting privacy under each model. Based on our analysis, we argue that secret-sharing based voting protocols offer a more natural and elegant privacy-preserving solution than their encryption-based counterparts. We thus design and implement Koinonia, a voting system that provides long-term privacy against powerful adversaries and enables anyone to verify that each ballot is well-formed and the tallying is done correctly. Our experiments show that Koinonia protects voting privacy with a reasonable performance.Item Transparent, Auditable, and Stepwise Verifiable Online E-Voting Enabling an Open and Fair Election(MDPI, 2017-08-17) Zou, Xukai; Li, Huian; Li, Feng; Peng, Wei; Sui, Yan; Computer and Information Science, School of ScienceMany e-voting techniques have been proposed but not widely used in reality. One of the problems associated with most existing e-voting techniques is the lack of transparency, leading to a failure to deliver voter assurance. In this work, we p verifiable, viewable, and mutual restraining e-voting protocol that exploits the existing multi-party political dynamics such as in the US. The new e-voting protocol consists of three original technical contributions—universal verifiable voting vector, forward and backward mutual lock voting, and in-process check and enforcement—that, along with a public real time bulletin board, resolves the apparent conflicts in voting such as anonymity vs. accountability and privacy vs. verifiability. Especially, the trust is split equally among tallying authorities who have conflicting interests and will technically restrain each other. The voting and tallying processes are transparent/viewable to anyone, which allow any voter to visually verify that his vote is indeed counted and also allow any third party to audit the tally, thus, enabling open and fair election. Depending on the voting environment, our interactive protocol is suitable for small groups where interaction is encouraged, while the non-interactive protocol allows large groups to vote without interaction.