ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "dynamical systems"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A fresh look at the notion of normality
    (SNS, 2020-12) Bergelson, Vitaly; Downarowicz, Tomasz; Misiurewicz, Michał; Mathematical Sciences, School of Science
    Let G be a countable cancellative amenable semigroup and let (Fn) be a (left) Følner sequence in G. We introduce the notion of an (Fn)-normal element of {0,1}G. When G = (N,+) and Fn={1,2,...,n}, the (Fn)-normality coincides with the classical notion. We prove that: ∙ If (Fn) is a Følner sequence in G, such that for every α∈(0,1) we have ∑nα|Fn|<∞, then almost every x∈{0,1}G is (Fn)-normal. ∙ For any Følner sequence (Fn) in G, there exists an Cham\-per\-nowne-like (Fn)-normal set. ∙ There is a natural class of "nice" Følner sequences in (N,×). There exists a Champernowne-like set which is (Fn)-normal for every nice Følner \sq. ∙ Let A⊂N be a classical normal set. Then, for any Følner sequence (Kn) in (N,×) there exists a set E of (Kn)-density 1, such that for any finite subset {n1,n2,…,nk}⊂E, the intersection A/n1∩A/n2∩…∩A/nk has positive upper density in (N,+). As a consequence, A contains arbitrarily long geometric progressions, and, more generally, arbitrarily long "geo-arithmetic" configurations of the form {a(b+ic)j,0≤i,j≤k}. ∙ For any Følner \sq\ (Fn) in (N,+) there exist uncountably many (Fn)-normal Liouville numbers. ∙ For any nice Følner sequence (Fn) in (N,×) there exist uncountably many (Fn)-normal Liouville numbers.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University