- Browse by Subject
Browsing by Subject "dynamic hydrogels"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation(Elsevier, 2018) Arkenberg, Matthew R.; Moore, Dustin M.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyCell-laden hydrogels whose crosslinking density can be dynamically and reversibly tuned are highly sought-after for studying pathophysiological cellular fate processes, including embryogenesis, fibrosis, and tumorigenesis. Special efforts have focused on controlling network crosslinking in poly(ethylene glycol) (PEG) based hydrogels to evaluate the impact of matrix mechanics on cell proliferation, morphogenesis, and differentiation. In this study, we sought to design dynamic PEG-peptide hydrogels that permit cyclic/reversible stiffening and softening. This was achieved by utilizing reversible enzymatic reactions that afford specificity, biorthogonality, and predictable reaction kinetics. To that end, we prepared PEG-peptide conjugates to enable sortase A (SrtA) induced tunable hydrogel crosslinking independent of macromer contents. Uniquely, these hydrogels can be completely degraded by the same enzymatic reactions and the degradation rate can be tuned from hours to days. We further synthesized SrtA-sensitive peptide linker (i.e., KCLPRTGCK) for crosslinking with 8-arm PEG-norbornene (PEG8NB) via thiol-norbornene photocrosslinking. These hydrogels afford diverse softening paradigms through control of network structures during crosslinking or by adjusting enzymatic parameters during on-demand softening. Importantly, user-controlled hydrogel softening promoted spreading of human mesenchymal stem cells (hMSCs) in 3D. Finally, we designed a bis-cysteine-bearing linear peptide flanked with SrtA substrates at the peptide’s N- and C-termini (i.e., NH2-GGGCKGGGKCLPRTG-CONH2) to enable cyclic/reversible hydrogel stiffening/softening. We show that matrix stiffening and softening play a crucial role in growth and chemoresistance in pancreatic cancer cells. These results represent the first dynamic hydrogel platform that affords cyclic gel stiffening/softening based on reversible enzymatic reactions. More importantly, the chemical motifs that affords such reversible crosslinking were built-in on the linear peptide crosslinker without any post-synthesis modification.Item Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels(ACS, 2019) Nguyen, Han D.; Liu, Hung-Yi; Hudson, Britney N.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyEnzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ cross-linking of macromers containing hydroxyl-phenol groups. The use of HRP to initiate thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate the thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the cross-linking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) was used as a cross-linker for forming enzymatically and orthogonally polymerized hydrogel. For HRP-initiated PEG-peptide hydrogel cross-linking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide cross-linkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine cross-links following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary cross-linking, which dynamically increased hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels exhibited excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new cross-linking mechanism for preparing modularly and dynamically cross-linked hydrogels.Item Enzymatic crosslinking of dynamic hydrogels for in vitro cell culture(2018-04) Arkenberg, Matthew R.; Lin, Chien-ChiStiffening and softening of extracellular matrix (ECM) are critical processes governing many aspects of biological processes. The most common practice used to investigate these processes is seeding cells on two-dimensional (2D) surfaces of varying stiffness. In recent years, cell-laden three-dimensional (3D) scaffolds with controllable properties are also increasingly used. However, current 2D and 3D culture platforms do not permit spatiotemporal controls over material properties that could influence tissue processes. To address this issue, four-dimensional (4D) hydrogels (i.e., 3D materials permitting time-dependent control of matrix properties) are proposed to recapitulate dynamic changes of ECM properties. The goal of this thesis was to exploit orthogonal enzymatic reactions for on-demand stiffening and/or softening of cell-laden hydrogels. The first objective was to establish cytocompatible hydrogels permitting enzymatic crosslinking and stiffening using enzymes with orthogonal reactivity. Sortase A (SrtA) and mushroom tyrosinase (MT) were used sequentially to achieve initial gelation and on-demand stiffening. In addition, hydrogels permitting reversible stiffening through SrtA-mediated peptide ligation were established. Specifically, poly(ethylene glycol) (PEG)-peptide hydrogels were fabricated with peptide linkers containing pendent SrtA substrates. The hydrogels were stiffened through incubation with SrtA, whereas gel softening was achieved subsequently via addition of SrtA and soluble glycine substrate. The second objective was to investigate the role of dynamic matrix stiffening on pancreatic cancer cell survival, spheroid formation, and drug responsiveness. The crosslinking of PEG-peptide hydrogels was dynamically tuned to evaluate the effect of matrix stiffness on cell viability and function. Specifically, dynamic matrix stiffening inhibited cell proliferation and spheroid formation, while softening the cell-laden hydrogels led to significant increase in spheroid sizes. Matrix stiffness also altered the expression of chemoresistance markers and responsiveness of cancer cells to gemcitabine treatment. markers and responsiveness of cancer cells to gemcitabine treatment.