ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "divide-and-conquer"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Computational Limits of A Distributed Algorithm for Smoothing Spline
    (2017) Shang, Zuofeng; Cheng, Guang; Mathematical Sciences, School of Science
    In this paper, we explore statistical versus computational trade-off to address a basic question in the application of a distributed algorithm: what is the minimal computational cost in obtaining statistical optimality? In smoothing spline setup, we observe a phase transition phenomenon for the number of deployed machines that ends up being a simple proxy for computing cost. Specifically, a sharp upper bound for the number of machines is established: when the number is below this bound, statistical optimality (in terms of nonparametric estimation or testing) is achievable; otherwise, statistical optimality becomes impossible. These sharp bounds partly capture intrinsic computational limits of the distributed algorithm considered in this paper, and turn out to be fully determined by the smoothness of the regression function. As a side remark, we argue that sample splitting may be viewed as an alternative form of regularization, playing a similar role as smoothing parameter.
  • Loading...
    Thumbnail Image
    Item
    Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data
    (2018) Xu, Ganggang; Shang, Zuofeng; Cheng, Guang; Mathematical Sciences, School of Science
    Divide-and-conquer is a powerful approach for large and massive data analysis. In the nonparameteric regression setting, although various theoretical frameworks have been established to achieve optimality in estimation or hypothesis testing, how to choose the tuning parameter in a practically effective way is still an open problem. In this paper, we propose a data-driven procedure based on divide-and-conquer for selecting the tuning parameters in kernel ridge regression by modifying the popular Generalized Cross-validation (GCV, Wahba, 1990). While the proposed criterion is computationally scalable for massive data sets, it is also shown under mild conditions to be asymptotically optimal in the sense that minimizing the proposed distributed-GCV (dGCV) criterion is equivalent to minimizing the true global conditional empirical loss of the averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer framework.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University