- Browse by Subject
Browsing by Subject "dietary nitrate"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of dietary nitrate on human muscle power: a systematic review and individual participant data meta-analysis(Journal of the International Society of Sports Nutrition, 2021) Coggan, Andrew R.; Baranauskas, Marissa N.; Hinrichs, Rachel J.; Liu, Ziyue; Carter, Stephen J.Background: Previous narrative reviews have concluded that dietary nitrate (NO3−) improves maximal neuromuscular power in humans. This conclusion, however, was based on a limited number of studies, and no attempt has been made to quantify the exact magnitude of this beneficial effect. Such information would help ensure adequate statistical power in future studies and could help place the effects of dietary NO3− on various aspects of exercise performance (i.e., endurance vs. strength vs. power) in better context. We therefore undertook a systematic review and individual participant data meta-analysis to quantify the effects of NO3− supplementation on human muscle power. Methods: The literature was searched using a strategy developed by a health sciences librarian. Data sources included Medline Ovid, Embase, SPORTDiscus, Scopus, Clinicaltrials.gov, and Google Scholar. Studies were included if they used a randomized, double-blind, placebo-controlled, crossover experimental design to measure the effects of dietary NO3− on maximal power during exercise in the non-fatigued state and the within-subject correlation could be determined from data in the published manuscript or obtained from the authors. Results: Nineteen studies of a total of 268 participants (218 men, 50 women) met the criteria for inclusion. The overall effect size (ES; Hedge’s g) calculated using a fixed effects model was 0.42 (95% confidence interval (CI) 0.29, 0.56; p = 6.310 × 10− 11). There was limited heterogeneity between studies (i.e., I2 = 22.79%, H2 = 1.30, p = 0.3460). The ES estimated using a random effects model was therefore similar (i.e., 0.45, 95% CI 0.30, 0.61; p = 1.064 × 10− 9). Subgroup analyses revealed no significant differences due to subject age, sex, or test modality (i.e., small vs. large muscle mass exercise). However, the ES in studies using an acute dose (i.e., 0.54, 95% CI 0.37, 0.71; p = 6.774 × 10− 12) was greater (p = 0.0211) than in studies using a multiple dose regimen (i.e., 0.22, 95% CI 0.01, 0.43; p =0.003630). Conclusions: Acute or chronic dietary NO3− intake significantly increases maximal muscle power in humans. The magnitude of this effect–on average, ~ 5%–is likely to be of considerable practical and clinical importance.Item Short-term beetroot juice supplementation improves muscle speed and power but does not reduce blood pressure or oxidative stress in 65–79 y old men and women(Elsevier, 2023-09) Zoughaib, William S.; Hoffman, Richard L.; Yates, Brandon A.; Moorthi, Ranjani N.; Lim, Kenneth; Coggan, Andrew R.; Exercise & Kinesiology, School of Health and Human SciencesWe have previously demonstrated that acute ingestion of inorganic nitrate (NO3−)-rich beetroot juice (BRJ), a source of nitric oxide (NO) via the NO3− → nitrite (NO2−) → NO pathway, can improve muscle speed and power in older individuals. It is not known, however, whether this effect is maintained or perhaps even enhanced with repeated ingestion, or if tolerance develops as with organic nitrates, e.g., nitroglycerin. Using a double-blind, placebo-controlled, crossover design, we therefore studied 16 community-dwelling older (age 71 ± 5 y) individuals after both acute and short-term (i.e., daily for 2 wk) BRJ supplementation. Blood samples were drawn and blood pressure was measured periodically during each ∼3 h experiment, with muscle function determined using isokinetic dynamometry. Acute ingestion of BRJ containing 18.2 ± 6.2 mmol of NO3− increased plasma NO3− and NO2− concentrations 23 ± 11 and 2.7 ± 2.1-fold over placebo, respectively. This was accompanied by 5 ± 11% and 7 ± 13% increases in maximal knee extensor speed (Vmax) and power (Pmax), respectively. After daily supplementation for 2 wk, BRJ ingestion elevated NO3− and NO2− levels 24 ± 12 and 3.3 ± 4.0-fold, respectively, whereas Vmax and Pmax were 7 ± 9% and 9 ± 11% higher than baseline. No changes were observed in blood pressure or in plasma markers of oxidative stress with either acute or short-term NO3− supplementation. We conclude that both acute and short-term dietary NO3− supplementation result in similar improvements in muscle function in older individuals. The magnitudes of these improvements are sufficient to offset the decline resulting from a decade or more of aging and are therefore likely to be clinically significant.