- Browse by Subject
Browsing by Subject "design of experiments"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Analysis of Composite Structures in Curing Process for Shape Deformations and Shear Stress: Basis for Advanced Optimization(MDPI, 2021) Kumbhare, Niraj; Moheimani, Reza; Dalir, Hamid; Mechanical and Energy Engineering, School of Engineering and TechnologyIdentifying residual stresses and the distortions in composite structures during the curing process plays a vital role in coming up with necessary compensations in the dimensions of mold or prototypes and having precise and optimized parts for the manufacturing and assembly of composite structures. This paper presents an investigation into process-induced shape deformations in composite parts and structures, as well as a comparison of the analysis results to finalize design parameters with a minimum of deformation. A Latin hypercube sampling (LHS) method was used to generate the required random points of the input variables. These variables were then executed with the Ansys Composite Cure Simulation (ACCS) tool, which is an advanced tool used to find stress and distortion values using a three-step analysis, including Ansys Composite PrepPost, transient thermal analysis, and static structural analysis. The deformation results were further utilized to find an optimum design to manufacture a complex composite structure with the compensated dimensions. The simulation results of the ACCS tool are expected to be used by common optimization techniques to finalize a prototype design so that it can reduce common manufacturing errors like warpage, spring-in, and distortion.Item A Thermomechanical Analysis of Conformal Cooling Channels in 3D Printed Plastic Injection Molds(MDPI, 2018-12) Jahan, Suchana Akter; El-Mounayri, Hazim; Mechanical and Energy Engineering, School of Engineering and TechnologyPlastic injection molding is a versatile process, and a major part of the present plastic manufacturing industry. The traditional die design is limited to straight (drilled) cooling channels, which don't impart optimal thermal (or thermomechanical) performance. With the advent of additive manufacturing technology, injection molding tools with conformal cooling channels are now possible. However, optimum conformal channels based on thermomechanical performance are not found in the literature. This paper proposes a design methodology to generate optimized design configurations of such channels in plastic injection molds. The design of experiments (DOEs) technique is used to study the effect of the critical design parameters of conformal channels, as well as their cross-section geometries. In addition, designs for the "best" thermomechanical performance are identified. Finally, guidelines for selecting optimum design solutions given the plastic part thickness are provided.