ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "dentin"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bond strength evaluation of two resin cements with two adhesives and analysis of mode of failure
    (2009) Mohan, Preethi; Platt, Jeffrey A.; Chu, Tien-Min Gabriel; Moore, B. Keith; Taskonak, Burak; Matis, Bruce A.; Cochran, Michael A.
    Cementing of indirect restorations with resin cements generally requires the pre-treatment of dentin with an adhesive. When dual-cured or chemical-cured resin cements are used with these single-step adhesives, incompatibility issues exist. This has resulted in manufacturers making chemical changes in their products. Kerr Dental markets a new resin cement, Nexus Third generation (NX3), which utilizes a proprietary redox system different from the second generation of composite luting agent (NX2). The aim of this study was to evaluate microtensile bond strength and mode of failure of NX3 and NX2 with two different adhesive systems (total-etch and self-etch) after 1 week and after 3 months of storage. Methods: Sixty-four non-carious teeth were sectioned to expose the dentin using a low-speed saw. Dentin surfaces were ground with 320-grit SiC paper. The adhesives Optibond Solo Plus (SOL), and Optibond All In One (AIO) were applied, and resin cements (NX2, NX3) were used to lute 4-mm composite discs to the treated dentin surfaces. Microtensile bond strength was determined at 1 week (IM) and after 3 months (3MON) of storage using a universal testing machine (MTS). All specimens were examined under the stereomicroscope to determine the mode of failure. Random specimens from each failure group were examined using scanning electron microscopy. Statistical Analysis: Comparisons between the treatment combinations for differences in microtensile bond strength were performed using Weibull-distribution survival analysis. Comparisons between the treatment combinations for differences in the failure mode were performed using Fisher’s Exact tests. The group NX3 SOL IM (30.5 MPa) had significantly higher bond strength than NX3 SOL 3MON (13.4 MPa); NX3 AIO IM (11.3MPa); NX3 AIO 3MON (8.2 MPa; NX2 AIO 3MON (5.8 MPa); NX2 SOL IM (6.3 MPa), and NX2 SOL 3MON (3.2 MPa). The group NX2 AIO IM (19.3 MPa) was not significantly different from NX3 SOL IM. The group NX2 SOL 3MON and group NX2 SOL IM had a significantly higher percentage of teeth with mixed failure than all of the other groups. None of the other groups had significantly different failure mode. The group NX3 SOL IM had 90-percent beam survival beyond 17 MPa, and NX2 AIO IM had 50 percent of beams surviving beyond 17 MPa, a better performance. For all the other groups, more than 50 percent of beams failed below 17 MPa. Results show high evidence of degradation for all groups considered in this investigation. The use of these types of cement adhesive combinations in clinical situations should be used with this understanding.
  • Loading...
    Thumbnail Image
    Item
    Effect of silver diamine fluoride on the prevention of erosive tooth wear in vitro
    (Elsevier, 2020) Ainoosah, Sultan E.; Levon, John; Eckert, George J.; Hara, Anderson T.; Lippert, Frank; Cariology, Operative Dentistry and Dental Public Health, School of Dentistry
    Objectives To investigate the ability of silver diamine fluoride (SDF) to prevent erosive tooth wear in enamel and dentin. Methods SDF (38 %) was compared to deionized water (DIW, negative control), potassium fluoride (KF, fluoride control), silver nitrate (AgNO3, silver control), and fluoride varnish (FV, clinical reference) using erosion and erosion-abrasion cycling models. Bovine enamel and dentin slabs were embedded in resin blocks. Two resin blocks were glued to form study blocks (n = 8, per treatment), one for erosion and the other for the erosion-abrasion model. The blocks were treated once and then subjected to a five-day cycling model, with five daily citric acid erosive challenges (0.3 % citric acid/pH 2.6). Abrasion was performed using a toothbrushing machine with a medium-abrasive silica as abrasive (erosion-abrasion model only). Artificial saliva was used to remineralize the specimens after erosion/abrasion and as storage media between cycles. Surface loss (SL) was determined by non-contact profilometry. Data were analyzed using ANOVA (α = 0.05). Results Both eroded-abraded enamel and dentin specimens exhibited significantly more SL in all treatment groups than the only eroded ones (p < 0.001). For dentin, both AgNO3 and DIW groups had significantly more SL than SDF, KF, and FV groups (p < 0.001), for both models. For enamel, specimens had more SL in both AgNO3 and DIW groups compared to SDF, KF, and FV groups, in the erosion model. When enamel specimens were subjected to erosion-abrasion, FV resulted in the least SL (p < 0.001). Conclusion SDF was effective in reducing dental erosion on both substrates, but dental erosion-abrasion only on dentin. Clinical significance SDF may become a viable intervention for ETW prevention in dentin (e.g. exposed roots) once its efficacy has been confirmed under clinical conditions.
  • Loading...
    Thumbnail Image
    Item
    Efficacy of stannous, fluoride and their their combination in dentin erosion prevention in vitro
    (2015-06) Algarni, Amnah Abdullah; Lippert, Frank; Hara, Anderson Takeo; Department of Cariology, Operative Dentistry and Dental Public Health, IU School of Dentistry
    The aim of this study was to compare the protective effects of solutions containing stannous (Sn), fluoride (F) and their combination in the prevention of dentin erosion. Forty bovine root dentin specimens (4’4’2 mm3) were prepared and randomly assigned to 4 groups (n = 10): SnCl2 (800 ppm/6.7 mM Sn), NaF (250 ppm/13 mM F), NaF/SnCl2 (800 ppm/6.7 mM Sn; 250 ppm/13 mM F), and deionized water (DIW) as a negative control. An acquired pellicle was formed on dentin samples by incubation in clarified, pooled, stimulated human saliva for 24 hours. The specimens were subjected to 5 daily cycles, each consisting of 5 of min demineralization (0.3%/15.6 mM citric acid, pH 2.6, 6’/day) and 60 min of re-mineralization in clarified human saliva. Thirty minutes after the 1st, 3rd and 5th demineralization episodes of each day, the specimens were treated with one of the test solutions for 2 min. Surface loss was measured via optical profilometry. Mixed-model ANOVA followed by Tukey’s test were used for the statistical analysis. Sn, F, and their combination significantly reduced the dentin surface loss by 23%, 36%, and 60% compared with DIW, respectively. All groups were significantly different (p < 0.05). The combination of Sn and F significantly reduced the amount of dentin surface loss compared with all other groups. The F group also significantly reduced surface loss compared with Sn and DIW, followed by the Sn group, which showed significantly greater protection compared with the DIW control. The daily use of a combined fluoride and stannous solution is promising for preventing dentin erosion.
  • Loading...
    Thumbnail Image
    Item
    Evaluation of contact angle between root canal sealers and dentin treated with calcium hydroxide and irrigation solutions
    (2018) Nakaparksin, Pranai; Platt, Jeffrey; Levon
, John A.; Bringas, Josef S.; Brown, David T.
    Background: Numerous studies have reported the effect of long-term use of calcium hydroxide Ca(OH)2 to dentin. Nevertheless, there is little information available about the effect of Ca(OH)2 on wettability to the dentin. Objective: To investigate the effect of Ca(OH)2 application on dentin for two and four weeks on the wettability of two root canal sealers. Methods: Polished caries-free human dentin discs (n = 156) were allocated into 12 groups; G1 and G3 had two weeks’ treatment, G4 and G6, four weeks treatment. G1 and 101 G4 were treated with sterile water. G2, G3, G5 and G6 were treated with Ca(OH)2. G1, G3, G4, and G6 were irrigated with 6.0-percent NaOCl and 17-percent EDTA while G2, and G5 were irrigated with sterile water. Then, contact angles between Tubli-Seal and the treated dentin surfaces were measured. G7 and G12 were treated in the same fashion but were treated with BC sealer. Surface morphology evaluation of G1 and G6 was carried out by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX). Statistics were performed using three-way ANOVA and pair-wise comparisons between groups (α = 0.05). Results: Tubli-Seal (G1 through G6) had significantly smaller values for contact angles than BC sealer (G7 through G12) (p < 0.05). For the Tubli-Seal groups (G1 through G6), G4 had the highest mean of contact angles at 104.9 ± 1.9°, whereas G5 presented the lowest mean of contact angles at 85.4 ± 15.1. For the BC sealer groups (G7 through G12), G10 had the highest mean of contact angles at 145.4 ± 1.3°, while G11 demonstrated the lowest mean of contact angles at 130.2 ± 2.6°. Groups with Ca(OH)2 treatment with water irrigation (G2, 5, 11) had significantly lower contact angle than groups with Ca(OH)2 with chemical irrigation (G3, 6, 12) (p < 0.05), except G8, 9. According to SEM and EDX, water irrigation solution showed higher remaining Ca(OH)2 than irrigation with the chemical solution while Ca(OH)2 with chemical irrigation 102 demonstrated no Ca(OH)2 remaining after irrigation, similar to the surface of the control group. Conclusion: Within the limitations of this study, Tubli-seal has better wettability on dentin than BC sealer. Remaining calcium hydroxide demonstrated a trend toward decreased contact angle between dentin and root canal sealers. Moreover, two-minute irrigation with 6-percent NaOCl and 17-percent EDTA can remove calcium hydroxide from polished dentin surfaces.
  • Loading...
    Thumbnail Image
    Item
    Supplementation of an Orange Juice with Dietary Proteins to Prevent Enamel and Dentin Erosion
    (2015-05) Ferreira, Stella S.; Scaramucci, Tais; Hara, Anderson T.; Aoki, Idalina V.; Sobral, Maria A. P.; Department of Preventive and Community Dentistry, IU School of Dentistry
    Protein supplementation may be an alternative to reduce the erosive potential of acidic drinks. The aim of this in vitro study was to evaluate the erosive potential of an orange juice modified by dietary proteins. A commercially available orange juice was added 0.2 g/L casein, 2.0 g/L ovalbumin and their combination. The juice with no additives and a commercially available calcium-modified juice were used as negative and positive controls, respectively. Human enamel and dentin specimens (n=11) were tested in an erosion-remineralization cycling model. Enamel was analyzed by surface microhardness and profilometry, whilst dentin by profilometry only. Statistical analyses were performed using one-way ANOVA followed by Tukey's test (p<0.05). Calcium-modified juice showed the lowest erosive potential for both analyses (p<0.05). For enamel, the protein-added groups did not differ from each other (p>0.05) and showed significantly lower enamel loss compared to negative control (p<0.05). Regarding surface microhardness, casein showed the highest values compared to negative control (p<0.05). For dentin, none of the protein-added groups showed lower values of surface loss compared to negative control (p>0.05). In conclusion, for enamel the protein-modified orange juices presented reduced erosion of enamel, with casein showing a trend for better protection. For dentin, no reduction in the erosive potential was observed for the tested protein-modified orange juices.
  • Loading...
    Thumbnail Image
    Item
    Trend-analysis of dental hard-tissue conditions as function of tooth age
    (Elsevier, 2018-07) Algarni, Amnah A.; Ungar, Peter S.; Lippert, Frank; Martinez-Mier, E. Angeles; Eckert, George J.; González-Cabezas, Carlos; Hara, Anderson T.; Cariology, Operative Dentistry and Dental Public Health, School of Dentistry
    Objective This retrospective in-vitro study investigated tooth age effect on dental hard-tissue conditions. Methods Unidentified extracted premolars (n = 1500) were collected and their individual age was estimated (10–100 (±10) years old (yo)) using established dental forensic methods Dental caries, fluorosis and tooth wear (TW) were assessed using the International Caries Detection and Assessment System (ICDAS; 0–5 for crown and 0–2 for root), Thylstrup-Fejerskov (TFI; 0–9) and Basic Erosive Wear Examination (BEWE; 0–3) indices, respectively. Staining and color were assessed using the modified-Lobene (MLI) (0–3) and VITA shade (B1-C4) indices, respectively. Relationships between indices and age were tested using regression models. Results Starting at age ∼10yo, presence of caries increased from 35% to 90% at ∼50yo (coronal), and from 0% to 35% at ∼80yo (root). Caries severity increased from ICDAS 0.5 to 2 at ∼40yo and from ICDAS 0 to 0.5 at ∼60yo for coronal and root caries, respectively. Presence of TW increased from 25% (occlusal) and 15% (smooth-surfaces) to 100% at ∼80yo. TW severity increased from BEWE 0.5 to 2 at ∼50yo (occlusal) and ∼0.3 to 1.5 at ∼50yo (smooth-surfaces). Percentage and severity of fluorosis decreased from 70% to 10% at ∼80yo, and from TFI 1 to 0 at ∼90yo, respectively. Percentage of extrinsic staining increased from 0% to 85% at ∼80yo and its severity increased from MLI 0 to 2 at ∼70yo. Color changed from A3 to B3 at ∼50yo (crown), and from C2 to A4 at ∼85yo (root). Conclusions Aging is proportionally related to the severity of caries, TW, staining, and inversely to dental fluorosis. Teeth become darker with age
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University