- Browse by Subject
Browsing by Subject "dental pulp stem cells"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols(Wiley, 2017) Alghilan, M. A.; Windsor, L. Jack; Palasuk, Jadesada; Yassen, Ghaeth H.; Department of Endodontics, School of DentistryAim To investigate the attachment and proliferation of dental pulp stem cells (DPSC) on dentine treated with various endodontic regeneration protocols. Methodology Standardized dentine samples were irrigated with sodium hypochlorite (1.5% NaOCl) and ethylenediaminetetraacetic acid (17% EDTA) and randomized into four treatment groups and two control groups. The treatment groups were treated with a clinically used concentration of triple antibiotic paste (TAP), double antibiotic paste (DAP), calcium hydroxide (Ca(OH)2) or diluted TAP in a methylcellulose system (DTAP) for 1 week. Each sample in the treatment groups was then irrigated with EDTA. The two control groups were treated with EDTA or received no treatment. Dental pulp stem cells were seeded on each dentine specimen (10 000 cells). Lactate dehydrogenase activity assays were then performed to evaluate the attached DPSC after 1 day of incubation. Water-soluble tetrazolium assays were used to determine DPSC proliferation after three additional days of incubation. Friedman's test followed by least significant difference were used for statistical analyses (α = 0.05). Results Triple antibiotic paste and DTAP regeneration protocols, as well as EDTA-treated dentine, caused significant increases in DPSC attachment to dentine. Triple antibiotic paste, DAP and Ca(OH)2 regeneration protocols caused significant reductions in DPSC proliferation on dentine. However, the DTAP regeneration protocol did not have any significant negative effects on DPSC proliferation. Conclusions The clinically used endodontic regeneration protocols that include the use of TAP, DAP or Ca(OH)2 medicament negatively affected DPSC proliferation on dentine. However, the use of DTAP medicament during regenerative endodontic treatment may not adversely affect the proliferation of DPSC.Item The Effects of Nano-Hydroxyapatite in a Double Antibiotic Paste-Loaded Methycellulose Carrier on Dental Pulp Stem Cells(2019) Everhart, Adam R.; Spolnik, Kenneth J.; Bruzzaniti, Angela; Bringas, Josef S.; Ehrlich, Ygal; Gregory, Richard L.The effects of hydroxyapatite in a DAP-loaded MC carrier on dental pulp stem cells Introduction: Regenerative endodontic procedures (REP) require disinfection techniques to eliminate bacteria from the infected immature root canal system and promote new growth of the pulp-dentin complex. Double antibiotic paste (DAP), a mixture of ciprofloxacin and metronidazole, has shown efficacy in doing so while minimizing cytotoxicity on dental pulp stem cells (DPSC). Stem cells, scaffolding, and growth factors are necessary in the maturation, proliferation, and differentiation of mesenchymal stem cells into the root canal system. Nano-hydroxyapatite (n-HA) has a history of biocompatibility and, in addition, has shown promising effects as a tissue bioengineering material. Objective: The aim of this in vitro study was to investigate the proliferation and mineralization of DPSC in the presence of 1% DAP and methylcellulose (MC) with varying concentrations of nano-hydroxyapatite. Materials and Methods: DPSC were plated in 24-well plates containing culture media. The next day, semi-permeable 0.1 mm Transwell chambers were inserted into the wells to separate the reservoirs for medicaments. Treatment paste composed of methylcellulose containing 1% DAP with either 0.25%, 0.50%, or 1.0% nano-hydroxyapatite was added along with culture media. Methylcellulose alone and calcium hydroxide (Ultracal) were used as control groups. After 3 days, cells were evaluated for cytotoxic effects using an MTS proliferation assay (n = 10, in triplicate). DPSCs were also cultured with these medicaments for 7 days in osteogenic media and evaluated for alkaline phosphatase (ALP) activity and mineralization activity (n = 13, in triplicate). Comparisons between groups for differences in mineralization, BSA, and ALP activity were performed using analysis of variance (ANOVA), with different variances allowed for each group and a random effect included in the model to account for correlation within each of the three trials. A simulation-based model was used to adjust for multiple comparisons. Results: Addition of n-HA treatment groups increased mineralization significantly greater than calcium hydroxide, with MC alone and MC+DAP+0.5% HA providing the greatest effect. Regarding ALP, all HA concentrations performed significantly greater than MC and DAP concentrations. Proliferation demonstrated similar metabolic activity in all experimental groups with few comparisons significant. Conclusion: The challenge in REPs is to maintain survival, and preferably promote the proliferation and development of DPSCs into the pulp-dentin complex with a consistent treatment outcome. The combination of DAP with hydroxyapatite may allow for both disinfection and improved mineralization and cellular differentiation. This contribution has shown significant ability to increase stem cell differentiation into an osteogenic lineage as well as calcium deposition, indicating end goal results of regenerative procedures.Item The effects of radicular dentine treated with double antibiotic paste and ethylenediaminetetraacetic acid on the attachment and proliferation of dental pulp stem cells(Wiley, 2015-10) Kim, Ki Wan; Yassen, Ghaeth H.; Ehrlich, Ygal; Spolnik, Kenneth; Platt, Jeffrey A.; Windsor, L. Jack; Department of Biomedical and Applied Sciences, IU School of DentistryAim This study explored the effects of dentine treated with two concentrations of double antibiotic paste (DAP) and ethylenediaminetetraacetic acid (EDTA) on the attachment and proliferation of dental pulp stem cells (DPSCs). Materials and Methods Radicular dentine samples were prepared with identical dimensions and randomized into six groups (n = 4). Four groups were treated with double antibiotic paste (DAP) at concentrations of 500 mg ml−1 or 1 mg ml−1 with or without EDTA. The other two groups were treated with EDTA only or received no treatment. DPSCs were seeded on each dentine sample (10 000 cells per sample). Lactate dehydrogenase activity assays were used to calculate the attached DPSCs after 1 day of incubation. Water soluble tetrazolium assays were performed to investigate DPSCs proliferation on the treated dentine samples after three additional days of incubation. Two-way anova followed by Tukey–Kramer tests was used for statistical analyses (α = 0.05). Results Dentine treated with 1 or 500 mg ml−1 of DAP followed by EDTA caused significant increases in DPSCs attachment compared to the dentine treated with the DAP alone. The 500 mg ml−1 of DAP with or without EDTA caused significant reductions in DPSCs proliferation. However, the treatment of dentine with 1 mg ml−1 of DAP did not have significant negative effects on DPSCs proliferation regardless of the use of EDTA. Conclusion The use of 1 mg ml−1 of DAP followed by 10 min of irrigation with EDTA in endodontic regeneration procedure may have no negative effects on the attachment and proliferation of DPSCs.Item Effects of Radiopaque Double Antibiotic Pastes on the Proliferation, Alkaline Phosphatase Activity and Mineral Deposition of Dental Pulp Stem Cells(Elsevier, 2020-09) Wu, Jennifer L.; McIntyre, Patrick W.; Hong, Jung Min; Yassen, Ghaeth H.; Bruzzaniti, Angela; Biomedical Sciences and Comprehensive Care, School of DentistryObjective The aim of this study was to investigate the effects of two radiopaque agents, barium sulfate (BaSO4) or zirconium oxide (ZrO2) in double antibiotic paste (DAP), on the proliferation and mineral deposition of human dental pulp stem cells (DPSC). Materials and methods Radiopaque antimicrobial medicaments composed of methylcellulose (MC) thickening polymer with BaSO4 or ZrO2 and either 1 or 5 mg/mL DAP (equal portions of metronidazole and ciprofloxacin) were used to investigate DPSC proliferation after 3 days, and alkaline phosphatase (ALP) activity and mineral deposition after 7 and 14 days. Radiopaque agents without DAP and Ca(OH)2 were used as controls. Results MC-BaSO4 DAP and MC-ZrO2 DAP at 1 or 5 mg/mL had no adverse effect on DPSC proliferation, compared to the media and MC controls. MC-ZrO2 (DAP-free) greatly increased ALP activity after 7 days. DPSC mineral deposition was modestly reduced at 7 days by MC-BaSO4 DAP and MC-ZrO2 DAP, but not by DAP-free radiopaque agents, and was most reduced by 5 mg/mL DAP in the 14-day cultures. Conclusions MC-BaSO4 or MC-ZrO2 medicaments containing up to 5 mg/mL of DAP supported the proliferation and early osteogenic differentiation of DPSC. Low DAP concentrations and short culture times led to more favorable effects on ALP activity and mineral deposition by DPSC. The findings suggest that radiopaque agents added for the purpose of detecting whether medicaments occupy the full extent of the root canal may have clinical applications. Radiopaque antibiotic medicaments containing low DAP concentrations may be an alternative to Ca(OH)2 for regenerative endodontic procedures.